Math, asked by snandakishore908, 1 month ago

it's urgent please send me ​

Attachments:

Answers

Answered by BrainlySparrow
211

Step-by-step explanation:

 \pink{ \clubsuit \: \mathfrak{ \underline{Question : }}}

 \displaystyle{ \tt{ \blue{ \circ \:  \frac{ {( {3}^{ - 2} )}^{2} \times ( {5}^{2} ) {}^{ - 3} \times ( {t}^{ - 3} ) {}^{2}   }{( {3}^{ - 2} ) {}^{3}  \times (5) {}^{ - 3}  \times ( {t}^{ - 4})  {}^{3} }   }}}

 \: \:

 \pink{ \clubsuit \: \mathfrak{ \underline{Solution : }}}

As we know that,

 \sf{ {(a}^{m}){}^{n}  =  {a}^{mn} }

____________________

Let's start solving!

 \displaystyle{ \tt{ \leadsto \: \frac{ {3}^{ - 2 \times 2}  \times  {5}^{2 \times  - 3}  \times  {t}^{ - 3 \times 2} }{ {3}^{ - 2 \times 3}   \times  {5}^{ - 3}  \times  {t}^{ - 4 \times 3} }  }}

 \displaystyle{ \tt{ \leadsto \:  \frac{ {3}^{ - 4}  \times  {5}^{ - 6}  \times  {t}^{ - 6} }{ {3}^{ - 6}  \times  {5}^{ - 3} \times  {t}^{ - 12}  } }}

 \: \:

As we know that ,

 \sf{ {a}^{m}  \div  {a}^{n} =  {a}^{m - n}  }

 \displaystyle{ \tt{ \leadsto \:  {3}^{( - 4) - ( - 6)}  \times  {5}^{( - 6) - ( - 3)} \times  {t}^{( - 6) - ( - 12)}  }}

 \displaystyle{ \tt{ \leadsto \: {3}^{ - 4 + 6}  \times  {5}^{ - 6 + 3} \times  {t}^{ - 6 + 12}   }}

 \displaystyle{ \tt{ \leadsto \:  {3}^{2} \times   {5}^{ - 3}  \times  {t}^{6} }}

 \underline{ \therefore \sf{The \: required \: answer \: is \:  \pink{ {3}^{4} \times  {5}^{ - 3}   \times  {t}^{6} .}}}

 \: \:

_______________________________

 \pink{ \clubsuit \: \mathfrak{ \underline{More \: Information : }}}

\bf{\dag}\:\:\underline{\text{Law of Exponents :}}\\\\\bigstar\:\:\sf\dfrac{a^m}{a^n} = a^{m - n}\\\\\bigstar\:\:\sf{(a^m)^n = a^{mn}}\\\\\bigstar\:\:\sf(a^m)(a^n) = a^{m + n}\\\\\bigstar\:\:\sf\dfrac{1}{a^n} = a^{-n}\\\\\bigstar\:\:\sf\sqrt[\sf n]{\sf a} = (a)^{\dfrac{1}{n}}

Similar questions