it's were important so no spam please and only correct answers please
Answers
Answer:
iii) z2-4z-12
= z2 - 6z-2z-12
= z(z-6)-2(z-6)
= (z-2) (z-6)
Question:-
Factorize:-
Solutions:-
(i) a² - 2ab + b² - c²
→ We know,
(a - b) = a² - 2ab + b²
Hence,
a² - 2ab + b² = (a - b)²
(a - b)² - c²
Now,
Applying a² - b² = (a + b)(a - b)
Therefore,
= {(a - b) + c}{(a - b) - c}
= (a - b + c)(a - b - c) (Ans)
________________________________
(ii) 16x⁴ - 625y⁴
→ = (4x²)² - (25y²)²
Applying a² - b² = (a + b)(a - b)
= (4x² + 25y²)(4x² - 25y²)
= (4x² + 25y²){(2x)² - (5y)²}
Applying a² - b² = (a + b)(a - b) again,
= (4x² + 25y²){(2x + 5y)(2x - 5y)}
= (4x² + 25y²)(2x + 5y)(2x - 5y) (Ans)
________________________________
(iii) z² - 4z - 12
→ By splitting the middle term,
= z² - 6z + 2z - 12
= z(z - 6) + 2(z - 6)
= (z - 6)(z + 2) (Ans)
________________________________
(iv) x⁴ - (x - z)⁴
→ (x²)² - {(x - z)²}²
Applying a² - b² = (a + b)(a - b)
= {x² + (x - z)²}{x² - (x - z)²}
Using (a - b)² = a² + b² - 2ab
And applying a² - b² = (a + b)(a - b)
= {x² + (x² + z² - 2xz)}[{x - (x - z)}{x + (x - z)}]
= {x² + x² + z² - 2xz}[{x - x + z}{x + x - z}]
= (2x² + z² - 2xz)(z)(2x - z) (Ans)
________________________________
Some other algebraic identities:-
- (a + b)² = a² + b² + 2ab
- (a + b)³ = a³ + b³ + 3a²b + 3ab²
- (a - b)³ = a³ - b³ - 3a²b + 3ab²
- a³ - b³ = (a - b)(a² + ab + b²)
________________________________