It sino + tano = m
tano - sino an
Then express the
values of m²-n² in terms
of M and N
Answers
Answered by
141
If sin Ф + tan Ф = m and tan Ф - sin Ф = n. Then prove that m² - n² = 4√mn.
Now, adding equation (1) & (2), we get
Now, substitute the value of tan Ф in equation (1), we get
Now, we know that sec²Ф - tan²Ф = 1
Now, put the values of sin Ф & tan Ф from above.
Hence Proved!!!
VishalSharma01:
Great Answer as Always :)
Answered by
58
Given :----
- sinA + tanA = m
- tanA - sinA = n
Question :---- we have to Prove m²-n² = 4√mn
Assume
sinA+tanA = m ------------------ Equation (1)
tanA - sinA = n ------------------ Equation (2)
Squaring and adding both Equations now or using ,
(a+b)² - (a-b)²= 4ab
we get,
m² - n² = 4tanAsinA -------------- [LHS]
Now, Lets solve RHS, by putting value of m & n ....
4√mn
→ 4√(tanA+sinA)(tanA-sinA)
→ 4√(tan²A - sin²A) [(a+b)(a-b) = (a²-b²)]
→ 4√[(sin²A/cos²A) - sin²A] [ tanA = sinA/cosA ]
Hence ,
[ Hope i Helped you in easiest way .]
Similar questions