Math, asked by dj12387, 10 months ago

It sino + tano = m
tano - sino an
Then express the
values of m²-n² in terms
of M and N​

Answers

Answered by Anonymous
141

\huge{\blue{\underline{\underline{\bf{Correct\;Question:-}}}}}

If sin Ф + tan Ф = m and tan Ф - sin Ф = n. Then prove that m² - n² = 4√mn.

\huge{\blue{\underline{\underline{\bf{Answer:-}}}}}

\sf{\implies \tan \theta + \sin \theta = m\;\;\;\;........(1)}

\sf{\implies \tan \theta - \sin \theta = n\;\;\;\;........(2)}

Now, adding equation (1) & (2), we get

\sf{\implies 2\tan \theta=m+n}

\sf{\implies \tan \theta = \dfrac{m+n}{2}}

Now, substitute the value of tan Ф in equation (1), we get

\sf{\implies \dfrac{m+n}{2}+\sin \theta = m}

\sf{\implies \sin \theta = m-\dfrac{m+n}{2}}

\sf{\implies \sin \theta = \dfrac{2m+-m-n}{2}=}

\sf{\implies \sin \theta = \dfrac{m-n}{2}}

Now, we know that sec²Ф - tan²Ф = 1

\sf{\implies \dfrac{1}{\cos^{2}\theta} - \tan^{2}\theta = 1}

\sf{\implies \dfrac{1}{1-\sin^{2}\theta}-\tan^{2}\theta = 1}

Now, put the values of sin Ф & tan Ф from above.

\sf{\implies \dfrac{1}{1-\Bigg(\dfrac{m-n}{2}\Bigg)^{2}}-\Bigg(\dfrac{m+n}{2}\Bigg)^{2}=1}

\sf{\implies \dfrac{1-\Bigg(\dfrac{m+n}{2}\Bigg)^{2}+\Bigg(\dfrac{m+n}{2}\Bigg)^{2}+\Bigg(\dfrac{m-n}{2}\Bigg)^{2}}{1-\Bigg(\dfrac{m-n}{2}\Bigg)^{2}} =1}

\sf{\implies 1-\Bigg(\dfrac{m+n}{2}\Bigg)^{2}+\Bigg[\dfrac{(m-n)(m+n)}{4}\Bigg]^{2}=1-\Bigg(\dfrac{m-n}{2}\Bigg)^{2}}

\sf{\implies \Bigg(\dfrac{m^{2}-n^{2}}{4}\Bigg)^{2}=\Bigg(\dfrac{m+n}{2}\Bigg)^{2} -\Bigg(\dfrac{m-n}{2}\Bigg)^{2}}

\sf{\implies \Bigg(\dfrac{m^{2}-n^{2}}{4}\Bigg)^{2}=\dfrac{m^{2}+n^{2}+2mn}{4}-\dfrac{m^{2}+n^{2}-2mn}{4}}

\sf{\implies \Bigg(\dfrac{m^{2}-n^{2}}{4}\Bigg)^{2}=\dfrac{m^{2}+n^{2}+2mn-m^{2}-n^{2}+2mn}{4}}

\sf{\implies \Bigg(\dfrac{m^{2}-n^{2}}{4}\Bigg)^{2} = \dfrac{4mn}{4}}

\sf{\implies \dfrac{m^{2}-n^{2}}{4}\Bigg=\sqrt{mn}}

\sf{\implies m^{2}-n^{2}=4\sqrt{mn}}

Hence Proved!!!


VishalSharma01: Great Answer as Always :)
Anonymous: Perfect !
Anonymous: Thanks Both of you :)
ShivamKashyap08: Awesome !! :D
Anonymous: Thanks ^^'
Anonymous: Extraordinary answer
Anonymous: Thanks Bhai ^_^
Answered by RvChaudharY50
58

Given :----

  • sinA + tanA = m
  • tanA - sinA = n

Question :---- we have to Prove -n² = 4mn

Assume

sinA+tanA = m ------------------ Equation (1)

tanA - sinA = n ------------------ Equation (2)

Squaring and adding both Equations now or using ,

(a+b)² - (a-b)²= 4ab

we get,

- = 4tanAsinA -------------- [LHS]

Now, Lets solve RHS, by putting value of m & n ....

4mn

4√(tanA+sinA)(tanA-sinA)

4√(tan²A - sin²A) [(a+b)(a-b) = (-b²)]

4√[(sin²A/cos²A) - sin²A] [ tanA = sinA/cosA ]

 \implies4  \sqrt{ \frac{ \sin^{2}a  -  \sin^{2}a \times  \cos^{2} a }{cos^{2} a} }  \\  \\\implies 4 \sqrt{ \frac{sin^{2}a(1 - cos^{2} a)}{ \cos^{2} a } }  \:  \\  \\    \implies \: 4 \sqrt{ \frac{sin^{4} a}{cos ^{2} a} }  \\  \\ \implies \: \frac{ 4sin^{2}a }{ {cos}a }  \\  \\ \implies \: 4tana \times sina

\large\red{\boxed{\sf </strong><strong>LHS</strong><strong>=</strong><strong>RHS</strong><strong>}}

Hence ,

\large\</strong><strong>g</strong><strong>r</strong><strong>e</strong><strong>e</strong><strong>n</strong><strong>{\boxed{\sf </strong><strong>{m}^{2}  -  {n}^{2}  = 4 \sqrt{mn}</strong><strong>}}

[ Hope i Helped you in easiest way .]

Similar questions