Physics, asked by anamikasinghjadaun, 2 months ago

It takes 208.4 kJ of energy to remove one mole of electrons form the atoms on the surface of rubidium metal. If rubidium metal is irradiated with 254 nm light, what is the maximum velocity the released electrons can have?

Answers

Answered by jayasreeghatak13
0

Answer:

1.

Science

Chemistry question & answer

dravid1992sla dravid1992sla

Asked 2yrs ago.

It takes 208.4 kJ of energy to remove 1 mole of electrons from the atoms on the surface of rubidium metal. If rubidium metal is irradiated with 254-nm light, what is the maximum kinetic energy the released electrons can have?

pantaposlovni94

pantaposlovni94

5.0

0

1

2

RESULT

Enter your comment here

Chemical Principles, 8th Edition

Chemical Principles textbook solutions

We found a book related to your question.

SEE SOLUTIONS

Chemical Principles, 7th Edition

Chemical Principles textbook solutions

We found a book related to your question.

SEE SOLUTIONS

Chemical Principles, 6th Edition

Chemical Principles textbook solutions

We found a book related to your question.

SEE SOLUTIONS

John Darryl B. Lagdameo

John Darryl B. Lagdameo

5.0

0

1

The maximum kinetic energy an electron can have is shown below:

\begin{aligned} \text{KE = hv – hv$_o$} \end{aligned}

KE = hv – hv

o

where KE is the kinetic energy, hv is the energy of an incident photon, and hv_o

o

is the energy needed to remove one mole of electrons.

2

It takes 208.4 kiloJoules of energy to remove one mole of electrons (hv_o

o

) from the atoms on the surface of rubidium metal. Since there are 6.022^{23}

23

electrons in one mole of, we can calculate the hv_o

o

a single electron, which is shown below:

\begin{aligned} \text{hv$_o$ per electron = } \dfrac {\text{ hv$_o$ per mole}}{\text{N$_A$}}\\ \text{hv$_o$ per electron = } \dfrac {\text{$\dfrac {\text{208.8 kJ}}{\text{mole}}$}}{\text{$\dfrac {\text{6.022x10$^{23}$}}{\text{mole}}$}}\\ \text{hv$_o$ per electron = 3.467286616x10$^{-22}$ kJ} \end{aligned}

hv

o

per electron =

N

A

hv

o

per mole

hv

o

per electron =

mole

6.022x10

23

mole

208.8 kJ

hv

o

per electron = 3.467286616x10

−22

kJ

The conversion of kilojoule to Joule is shown below:

\begin{aligned} \text{1 kiloJoule = 1000 Joules} \end{aligned}

1 kiloJoule = 1000 Joules

The hv_o

o

per electron in Joules is shown below:

\begin{aligned} \text{hv$_o$ per electron = 3.467286616x10$^{-22}$ kJ} \times \dfrac {\text{1000 J}}{\text{1 kJ}}\\ \text{ hv$_o$ per electron = 3.467286616x10$^{-19}$ J} \end{aligned}

hv

o

per electron = 3.467286616x10

−22

kJ×

1 kJ

1000 J

hv

o

per electron = 3.467286616x10

−19

J

3

The radium metal is irradiated with 254 nanometers of light. The conversion of nanometers to meters is shown below:

\begin{aligned} \text{1 nanometer = 1x10$^{-9}$ meter} \end{aligned}

1 nanometer = 1x10

−9

meter

The constant h is the Planck’s constant that is equal to 6.626x10^{-34}

−34

Joule-second, while c is the speed of light, which is 3x10^8

8

meter per second. The energy of an incident photon (hv) of the radium metal irradiated at 254 nanometers is shown below:

\begin{aligned} \text{E = } \dfrac {\text{hc}}{\text{$\lambda$}}\\ \text{E = } \dfrac {\text{(6.626x10$^{-34}$ Js)(3x10$^8$ $\dfrac {\text{m}}{\text{s}}$}}{\text{254 nm}} \times \dfrac {\text{1 nm}}{\text{1x10$^{-9}$ m}}\\ \text{E = 7.825984252x10$^{-19}$ J} \end{aligned}

E =

λ

hc

E =

254 nm

(6.626x10

−34

Js)(3x10

8

s

m

×

1x10

−9

m

1 nm

E = 7.825984252x10

−19

J

4

The maximum kinetic energy of the released electrons in the radium metal irradiated at 254 nm is calculated below:

\begin{aligned} \text{KE = hv – hv$_o$}\\ \text{KE = 7.825984252x10$^{-19}$ J - 3.467286616x10$^{-19}$ J}\\ \text{KE = 4.358697636x10$^{-19}$ J $\approx$ 4.36x10$^{-19}$ J} \end{aligned}

KE = hv – hv

o

KE = 7.825984252x10

−19

J - 3.467286616x10

−19

J

KE = 4.358697636x10

−19

J ≈ 4.36x10

−19

J

RESULT

4.36x10^{-19}

−19

J

Similar questions