Math, asked by kavyaharsha653, 9 months ago

It the distance between two points (x, 7) and (1, 15) is 10 . find the volved of x​

Answers

Answered by ItzAditt007
2

Answer:-

There are two values of x are possible,x = -5and x = 7.

Explanation:-

Given:-

  • Two points (x, 7) and (1, 15).

  • Distance between the points is 10 units.

To Find:-

  • The Value of x.

ID Used:-

 \\  \large \orange{ \leadsto \boxed{ \red{ \bf (a - b) {}^{2} =   {a}^{2} - 2ab +  {b}^{2}  .}}}

Formula Used:-

 \\  \large \red{ \leadsto \boxed{ \pink{ \bf d =  \sqrt{(x_2 - x_1) {}^{2}  + (y_2 - y_1) {}^{2} }.}}}

Where,

  • d = Distance between the given two points.

  • \tt x_2\:\: and\:\:x_1 Are the x coordinates of given two points.

  • \tt y_2\:\: and\:\:y_1 Are the y coordinates of given two points.

So Here,

  • d = 10 units.

  • \tt y_2\:\: and\:\:y_1 15 amd 7 respectively.

  • \tt x_2 = 1.

  • \tt x_1 = x [To Find].

Now,

By putting the above values in the formula we get,

 \\ \bf \mapsto d =  \sqrt{(x_2 - x_1) {}^{2}  + (y_2 - y_1) {}^{2} }.

 \\ \rm\mapsto 10=  \sqrt{(1 - x) {}^{2}  + (15 - 7) {}^{2} }.

\\ \rm\mapsto(10) {}^{2}  =  \bigg( \sqrt{(1 - x) {}^{2}  + (15 - 7) {}^{2} } \bigg).   \\ \rm(squaring \:  \: both \:  \:the \:  \: sides)

\\ \rm\mapsto100 = (1 - x) {}^{2}  + (8) {}^{2} .

\\ \rm\mapsto100 = 1  - 2x +  {x}^{2}  + 64. \\  \rm(by \: \:  using \:  \: id).

\\ \rm\mapsto100 =  {x}^{2}  - 2x + 65.

\\ \rm\mapsto x {}^{2}  - 2x + 65 - 100 = 0.

\\ \rm\mapsto {x}^{2}  - 2x - 35 = 0.

\\ \rm\mapsto {x}^{2}  - (7 - 5)x  - 35 = 0. \:  \:  \:  \:  \:  \\  \rm(by \:  \: splitting \:  \: middle \:  \: term).

\\ \rm\mapsto {x}^{2}  - 7x + 5x - 35 = 0.

\\ \rm\mapsto x(x - 7) + 5(x - 7) = 0.

\\ \rm\mapsto(x - 7)(x + 5) = 0.

\\ \tt\mapsto  \:  \:  \rm either \: (x - 7) = 0 \:  \: \:  \:  or \:  \:  \:  \: (x + 5) = 0.

\\ \tt\mapsto  \:  \:  \rm either \: x  = 0 + 7 \:  \: \:  \:  or \:  \:  \:  \: x  = 0 - 5.

 \\  \large \red{ \mapsto \boxed{ \blue{ \rm  either  \:  \: x = 7 \:  \:  \:  \: or \:  \:  \:  \: x =  - 5.}}}

\bf\therefore The Required Values Of x Are 7 and -5.

Similar questions