Math, asked by mubinasinan, 1 month ago

It the points [7.-2] [5.1] . [3.k]Jare
Collinear find the volue
of 'k!​

Answers

Answered by SachinGupta01
6

\bf \underline{ \underline{\maltese\:Given} }

 \sf The  \: points \:  (7,-2) , (5,1) and (3,k)  \: are  \: collinear.

\bf \underline{\underline{\maltese\: To \: find }}

 \sf  \implies Value  \: of \:  K =  \: ?

\bf \underline{\underline{\maltese\: Solution }}

 \sf  If  \: the  \: points  \: are \:  Collinear \:  then,

 \sf  \implies Area  \: of \:  triangle = 0

 \sf  Let \:  the \:  points \:  be :

\bf \implies A(7,-2) ,  \: B(5,1)  \: and  \: C(3,k)

 \bf \underline{Now},

\underline{\boxed{\bf Area \ of \ triangle = \dfrac{1}{2} \times  | \ x_1(y_2-y_3)+x_2(y_3-y_1)+x_3(y_1-y_2) \  |}}

 \bf \underline{Where},

\bullet  \implies \: \sf  x_1 = 7

 \bullet\implies \: \sf  x_2 = 5

 \bullet\implies \: \sf  x_3 = 3

 \bullet\implies \: \sf  y_1 =  - 2

\bullet \implies \: \sf  y_2 = 1

\bullet \implies \: \sf  y_3 = K

 \sf Now, substituting \:  the \:  values,

 \sf \implies \dfrac{1}{2} \times  | \ 7(1-K )+5(K - (- 2))+3( - 2-1) \  | = 0

\sf \implies \dfrac{1}{2} \times  | \ 7(1-K )+5(K  +  2)+3( - 2-1) \  | = 0

\sf \implies \dfrac{1}{2} \times  | \ 7(1-K )+5(K  +  2)+3 (- 3)\  | = 0

\sf \implies\dfrac{1}{2} \times  | \ 7 - 7k + 5k + 10 - 9 \  | = 0

\sf \implies \dfrac{1}{2} \times  | \ 8 - 2k \  |= 0

\sf \implies 8 - 2k =  \cancel{0 \times  \bigg(\dfrac{1}{2} \bigg) }

\sf \implies 8 - 2k  = 0

\sf \implies 8  = 2k

\sf \implies  4 = k

 \underline{ \boxed{ \red{ \bf Therefore, the \: value \:  of \:  K = 4 }}}

Similar questions