Math, asked by StrongGirl, 7 months ago

It y = mx + C is a common tangent of circle x2 + y2 = 3 and hyperbola x2/64 - y2/100 = 1 then which of the following statement is true :

Attachments:

Answers

Answered by amansharma264
8

ANSWER.

=> 61c² = 492

EXPLANATION.

 \sf \to \: y \:  = mx + c \: is \: common \: to \: the \: circle \:  =  {x}^{2} +  {y}^{2}  = 3 \\  \\  \sf \to \: hyperbola \:  =  \dfrac{ {x}^{2} }{64} -  \dfrac{ {y}^{2} }{100}  = 1

 \sf \to \: condition \: of \: tangent  \: of \: circle\:  \implies \:  \: y = mx \:  +  \sqrt{r}  \sqrt{1 +  {m}^{2} }  \\  \\  \sf \to \: condition \: of \: tangent \: of \: hyperbola \implies \: y \:  = mx \:  +  \sqrt{ {a}^{2} {m}^{2}   -   {b}^{2}  }

 \sf \to \: \: we \: can \: equal \: the \: equation \:  \\  \\  \sf \to \:  \sqrt{3}  \sqrt{1 +  {m}^{2} }  =  \sqrt{64 {m}^{2}  - 100}  \\  \\  \sf \to \: 3(1 +  {m}^{2} ) = 64 {m}^{2} - 100 \\  \\  \sf \to \: 3 + 3 {m}^{2}   = 64 {m}^{2}  - 100 \\  \\  \sf \to \: 61 {m}^{2}  = 103 \\ \\  \sf \to \:  {m}^{2}  =  \dfrac{103}{61}

 \sf \to \: we \: can \: find \: c \:  =  \sqrt{r}  \sqrt{1 +  {m}^{2} } \\  \\  \sf \to \:  {c}^{2}   = 3(1 +  {m}^{2} ) \\  \\  \sf \to \:  {c}^{2}  = 3(1 +  \dfrac{103}{61} ) \\  \\  \sf \to \:  {c}^{2} = 3( \frac{61 + 103}{61}  ) \\  \\  \sf \to \:  {c}^{2}  =  \frac{3 \times 164}{61}  \\  \\  \sf \to \:  61{c}^{2}  = 492

Hence option [ 2 ] is correct.


Anonymous: Excellent.
Similar questions