iTanA+cotA=2 then find the value of tan²A-cot²A=?
Answers
Answered by
0
tanA+1/tanA =2,
(tan²A+1))tanA =2,
tan²A+1=2tanA,
then
tan²A-2tanA+1=0,
(tanA-1)²=0,
then
tanA-1=0,
tanA=1,
tanA=tan45°,
then
A=45°,
therefore
tan²A-cot²A,
tan²45° - cot²45°,
1² - 1²,
0
(tan²A+1))tanA =2,
tan²A+1=2tanA,
then
tan²A-2tanA+1=0,
(tanA-1)²=0,
then
tanA-1=0,
tanA=1,
tanA=tan45°,
then
A=45°,
therefore
tan²A-cot²A,
tan²45° - cot²45°,
1² - 1²,
0
Answered by
1
[ Let a = ∅ ]
▶ Answer :-
→ tan²∅ + cot²∅ = 2 .
▶ Step-by-step explanation :-
➡ Given :-
→ tan ∅ + cot ∅ = 2 .
➡ To find :-
→ tan²∅ + cot²∅ .
We have ,
▶ Now,
→ To find :-
✔✔ Hence, it is solved ✅✅.
Similar questions