Math, asked by devji06, 9 months ago

Its a humble request... please anyone do it.. with steps​

Attachments:

Answers

Answered by TakenName
9

The denominator has radical.

Since the denominator is in the form of a-b, we should multiply a+b to rationalize it.

\sf{\rightarrow(a+b)(a-b)=a^2-b^2\:[Denominator\:Rationalization]}

Given fraction:

\sf{=\dfrac{\sqrt{p+2q}+\sqrt{p-2q}}{\sqrt{p+2q}-\sqrt{p-2q}}\times \dfrac{\sqrt{p+2q}+\sqrt{p-2q}}{\sqrt{p+2q}+\sqrt{p-2q}}}

\sf{=\dfrac{(\sqrt{p+2q}+\sqrt{p-2q})^2}{(p+2q)-(p-2q)}}

\sf{=\dfrac{(p+2q)+2\sqrt{(p+2q)(p-2q)} +(p-2q)}{4q} }

\sf{=\dfrac{\cancel{2}p+\cancel{2}\sqrt{(p+2q)(p-2q)} }{4q} }

\sf{=\dfrac{p+\sqrt{(p+2q)(p-2q)} }{2q}}

So the value of x is the following:

  • \sf{x={\dfrac{p+\sqrt{(p+2q)(p-2q)} }{2q} }}

Now let's simplify the given equation:

\sf{2qx=p+\sqrt{(p+2q)(p-2q)} }

\sf{2qx-p=\sqrt{(p+2q)(p-2q)} }

\sf{(2qx-p)^2=(p+2q)(p-2q)}

\sf{4q^2x^2-4pqx+\cancel{p^2}=\cancel{p^2}-4q^2}

\sf{\cancel{4}q^2x^2-\cancel{4}pqx+\cancel{4}q^2=0}

\sf{\cancel{q^2}x^2-p\cancel{q}x+\cancel{q^2}=0}

\boxed{\sf{\therefore{qx^2-px+q=0}}}

Therefore the equality is shown.

Similar questions