Math, asked by urgent32, 1 year ago

Its urgent....
can u solve...

if z = 4-3i ,find z^-1​

Answers

Answered by BraɪnlyRoмan
63

\huge \boxed{ \underline{ \underline{ \bf{Answer}}}}

GIVEN :

Z = 4 - 3i

TO FIND :

z^-1

SOLUTION :

 \sf{z \:  =  \: 4 \:  -  \: 3i}

 \sf{ \bar{z} \:  =  \: 4 + 3i}

 \sf{  |z|  \:  =  \:  \sqrt{ {4}^{2} \:  +  \:  {3}^{2}  } }

 =  \:  \sqrt{25}

 =  \: 5

 \therefore \:  \sf{ \:  {z}^{ - 1}  =  \:  \frac{ \bar{z}}{ |z| } }

Putting the values from above, we get

 =  \:  \sf {\frac{4 \:  +  \: 3i}{ {5}^{2} } }

 =  \:   \sf{\frac{4 \:  +  \: 3i}{25} }

 =  \: \sf{  \frac{4}{25}  \:  +  \:  \frac{3i}{25} }

Hence our required answer is

 =  \boxed{ \bf{ \: \sf{  \frac{4}{25}  \:  +  \:  \frac{3i}{25} }}}

Answered by Anonymous
1

Given:- z = 4 - 3i

Find:- z^-1 = ?

\sf\bar{z} = 4 + 3i

|z| = \sf\sqrt{(4)^{2} + (3)^{2}}

|z| = √25

|z| = 5

z^-1 = z bar / |z|

z^-1 = (4 + 3i)/5

z^-1 = (4/5) + (3i)/5

Similar questions