Math, asked by babukabraham86, 7 months ago

its urgent for me please answer to this​

Attachments:

Answers

Answered by akashimahi112
0

hey your answer is :-

b = 125° (Alternate exterior angle)

a + b = 180° (LPA)

a = 180 - 125

a = 55°

b = d (Vertically opposite angle/VOA)

d = 125°

Similarly,

a = c (VOA)

c = 55 °

a = f (Alternate interior angle )

f = 55°

e = f (VOA)

e = 55°

Answered by rohitraj68577
0

Answer:

 \green{\therefore \:  e = f = d = b = 55 \degree} \\  \\   \green{\therefore  \: b = d = 125 \degree}

Step-by-step explanation:

 \green \star \: p || q \\  \\  \bold{By \: linear \: pair}  \\  \implies f + 125 \degree = 180 \degree \\  \\ \implies f = 180 - 125 \\  \\  \green{\implies f = 55 \degree} \\  \\  \bold{Similarly} \\ \implies e + 125 \degree = 180 \degree \\  \\ \implies e = 180 - 125 \\  \\ \green{ \implies e = 55 \degree} \\  \\  \bold{By \: alternate \: angle} \\  \implies e = d \\  \\ \implies 55 = d \\  \\ \green{\implies d = 55 \degree} \\   \\  \bold{Similarly} \\  \green{\implies a = 125 \degree} \\  \\  \bold{By \: linear \: pair}  \\ \implies a + b = 180 \degree\\  \\ \implies 125 + b = 180 \\  \\  \green{\implies b = 55 \degree} \\  \\  \bold{Similarly} \\ \implies c + d = 180 \degree \\  \\ \implies c + 55 = 180 \\  \\  \green{\implies c = 125 \degree}

Similar questions