Math, asked by GETZIE, 9 months ago

its urgent guys please​

Attachments:

Answers

Answered by MrDoxer
1

Step-by-step explanation: First

\dfrac{\cot^2\theta+\sec^2\theta}{\tan^2\theta+cosec^2\theta} =\dfrac{cosec^2\theta-1+\sec^2\theta}{\tan^2\theta+cosec^2\theta} =\dfrac{cosec^2\theta+\tan^2\theta}{\tan^2\theta+cosec^2\theta} =1

and since

1=\dfrac{\sin\theta\cos\theta}{\sin\theta\cos\theta}\\=(\sin\theta\cos\theta)\dfrac{1}{\sin\theta\cos\theta}\\=(\sin\theta\cos\theta)\dfrac{\sin^2\theta+\cos^2\theta}{\sin\theta\cos\theta}\\=(\sin\theta\cos\theta) \left(\dfrac{\sin\theta}{\cos\theta}+\dfrac{\cos\theta}{\sin\theta}  \right)=(\sin\theta\cos\theta) \left(\tan\theta+\cot\theta  \right)

we conclude

\dfrac{\cot^2\theta+\sec^2\theta}{\tan^2\theta+cosec^2\theta} =(\sin\theta\cos\theta)(\tan\theta+\cot\theta)

Similar questions