Math, asked by lili8595, 1 year ago

its urgent,
solve it plzzzzzz....​

Attachments:

Answers

Answered by Anonymous
21

SOLUTION:-

Let ABC be a right angled isosceles ∆ in which ∠B= 90°

Let AB= BC= a & AC= b

Now,

AB² + BC² [Pythagoras theorem]

=) b²= a² + a²

=) b²= 2a²...........(1)

Let AEC be the equilateral ∆ described on diagonal AC.

Let BDC be the equilateral described on base BC.

Now,

Area of AEC,

 =  >  \frac{ \sqrt{3} }{4}  {b}^{2}  \\  \\  =  >  {b}^{2}  =  \frac{4ar( \triangle \: AEC)}{ \sqrt{3} }

Now,

Area of BDC,

 =  >   \frac{ \sqrt{3} }{4}  {a}^{2}  \\ \\   =  >  {a}^{2}  =  \frac{4ar( \triangle BDC)}{ \sqrt{3} }

Now,

From (1), we get

 \frac{4ar( \triangle \: AEC)}{ \sqrt{3} }  = 2 \times  \frac{4ar( \triangle \: </u><u>BDC</u><u>)}{ \sqrt{3} }  \\  \\  =  &gt; ar( \triangle \: </u><u>BDC</u><u>) =  \frac{1}{2} ar( \triangle \: </u><u>AEC</u><u>)

Hope it helps ☺️

Attachments:
Similar questions