Math, asked by Anonymous, 5 months ago

iv) 1+tan2A/1+cot2A = 

      (A) sec2 A                 (B) -1              (C) cot2A                (D) tan2A



Attachments:

Answers

Answered by Anonymous
29

(iv) (D) is correct.

Justification:

We know that,

tan2A =1/cot2A

Now, substitute this in the given problem, we get

1+tan2A/1+cot2A

= (1+1/cot2A)/1+cot2A

= (cot2A+1/cot2A)×(1/1+cot2A)

= 1/cot2A = tan2A

So, 1+tan2A/1+cot2A = tan2A

Answered by Anonymous
23

Answer:

(iv) (D) is correct.

Justification:

We know that,

tan2A =1/cot2A

Now, substitute this in the given problem, we get

1+tan2A/1+cot2A

= (1+1/cot2A)/1+cot2A

= (cot2A+1/cot2A)×(1/1+cot2A)

= 1/cot2A = tan2A

So, 1+tan2A/1+cot2A = tan2A

hope this helps you

Similar questions