(iv) (2m - 5)2 - 2m + 3 = 4(m + 1)2 - 16
Answers
Answered by
0
Answer:
Required value of the variable m is - 4 / 3
Step-by-step explanation:
= > ( 2m - 5 )^2 - 2m + 3 = 4( m + 1 )^2 - 16
From factorization, we know that the value of the ( a + b )^2 is a^2 + b^2 + 2ab and the value of ( a - b )^2 is a^2 + b^2 - 2ab
= > ( 2m )^2 + ( 5 )^2 - 2( 2m x 5 ) - 2m + 3 = 4[ ( m )^2 + ( 1 )^2 + 2( m x 1 ) ] - 16
= > 4m^2 + 25 - 20m - 2m + 3 = 4[ m^2 + 1 + 2m ] - 16
= > 4m^2 - 22m + 3 + 25 = 4m^2 + 4 + 8m - 16
= > 4m^2 - 22m + 28 = 4m^2 + 8m - 16 + 4
= > 4m^2 - 22m + 28 = 4m^2 + 8m - 12
= > 4m^2 - 22m + 28 - 4m^2 - 8m + 12 = 0
= > 4m^2 - 4m^2 - 22m - 8m + 28 + 12 = 0
= > 30m + 40 = 0
= > 30m = - 40
= > m = - 40 / 30
= > m = - 4 / 3
mark as brainliest if correct
Similar questions