Math, asked by harshitkumarmutreja1, 11 months ago

(IV) a number less than 9?
A die is thrown once. Find the probability of getting
(1) a prime number; (ii) a number lying beiween 2 and 6;​

Answers

Answered by Anonymous
6

Answer:

(1) 1/2

(2) 1/2

Step-by-step explanation:

Given : A dice is thrown once.

(1) Total number of outcomes = 6 {1, 2, 3, 4, 5, 6}

Favourable outcomes of getting a prime number = 3 {2, 3, 5}

P(x) = Favourable outcomes / Total outcomes

P(getting a prime number) = 3/6 = 1/2

(2) Total number of outcomes = 6 {1, 2, 3, 4, 5, 6}

Favourable outcomes of getting a number lying between 2 and 6 = 3 {3, 4, 5}

P(x) = Favourable outcomes / Total outcomes

P(getting a number lying between 2 and 6) = 3/6 = 1/2

  • Probability means possibility.
  • Deals with the occurence of the random event.
Answered by Anonymous
5

\bf{\Huge{\boxed{\tt{\red{ANSWER\::}}}}}

\bf{\Large{\underline{\sf{Given\::}}}}}

A die is thrown once.

\bf{\Large{\underline{\bf{To\:find\::}}}}

The probability of getting;

  • A prime number.
  • A number lying between 2 & 6.

\bf{\Large{\underline{\rm{\pink{Explanation\::}}}}}

We know that formula of the Probability:

\leadsto\tt{\orange{Probability\:\:P(E)\:=\:\frac{Number\:of\:favorable\:outcomes}{Total\:possibles\:outcomes.} }}

\bf{\Large{\boxed{\bf{First\:Case\::}}}}}

Total outcomes that can be 1, 2, 3, 4, 5, 6.

\mapsto\sf{Number\:of\:possible\:outcomes\:of\:a\:die\:=\:6}

A/q

\longmapsto\rm{Prime\:number\:on\:a\:die\:=\:2\:,\:3\:,\:\&\:5}

\longmapsto\rm{Total\:prime\:number\:on\:a\:die\:=\:3}

\longmapsto\sf{P(E)\:\:=\frac{Number\:of\:outcomes(prime\:number\:comes)}{Total\:number\:of\:outcomes}}

\longmapsto\sf{P(E)\:\:=\frac{3}{6} }

\longmapsto\sf{P(E)\:\:=\cancel{\frac{3}{6} }}

\longmapsto\sf{\blue{P(E)\:\:=\frac{1}{2} }}

\bf{\Large{\boxed{\bf{Second\:Case\::}}}}}

\longmapsto\sf{Number\:lying\:between\:2\:\:\&\:\:6\:in\:die.}

\longmapsto\sf{Number\:lying\:\:=\:\:3\:\:,\:\:4\:\:,\:\:5}

\longmapsto\sf{Total\:Number\:lying\:=3}

Therefore,

\longmapsto\tt{P(E)\:\:=\:\:\frac{Number\:lying\:between\:2\:and\:6}{Total\:number\:outcomes\:in\;a\:die}}

\longmapsto\tt{P(E)\:\:=\:\:\frac{3}{6} }

\longmapsto\tt{P(E)\:\:=\:\:\cancel{\frac{3}{6} }}

\longmapsto\tt{\blue{P(E)\:\:=\:\:\frac{1}{2} }}

Similar questions