Math, asked by lahanesanmay, 8 months ago

iv)
cosec (90° - x) sin(180°- x)cot(360° - x)
sec(180° + x) tan (90° + x) sin(-x)
=​

Answers

Answered by Anonymous
4

Solution:-

\rm \implies \csc(90^{o} -x)\sin(180^o-x)\cot(360^o-x)\sec(180^o+x)\tan(90^o+x)\sin(-x)

Now we can write in radian form

\rm \implies \csc(\dfrac{\pi}{2} -x)\sin(\pi-x)\cot(2\pi-x)\sec(\pi+x)\tan(\dfrac{\pi}{2}+x)\sin(-x)

Now  using reduction of angle concept

\to\rm\csc(\dfrac{\pi}{2}-x )=\sec x

\rm\to\sin(\pi-x)=sin x

\rm\to\cot(2\pi-x)=-\cot x

\rm\to\sec(\pi+x)=-\sec x

\rm\to\tan(\dfrac{\pi}{2}+x )= -\cot x

\rm\to\sin(-x)=-\sin x

Now put the value

\rm\implies \sec x\: \times\:\sin x\: \times\: -\cot x\:\times\:-\sec x\:\times\:-\cot x\:\times\:-\sin x

Using trigonometry identities

\rm\to\sec x=\dfrac{1}{\cos x}

\rm\to\cot=\dfrac{\cos x}{\sin x}

Now we get

\rm\implies \dfrac{1}{\cos x} \times\sin x\times\dfrac{\cos x}{\sin x} \times\dfrac{1}{\cos x} x\times\dfrac{\cos x}{\sin x}\times\sin x

\rm\implies \dfrac{1}{\cancel{\cos x}} \times\sin x\times\dfrac{\cancel{\cos x}}{\sin x} \times\dfrac{1}{\cancel{\cos x}} x\times\dfrac{\cancel{\cos x}}{\sin x}\times\sin x

\rm\implies\sin x\times\dfrac{1}{\sin x} \times\dfrac{1}{\sin x}\times\sin x

Answer= 1

Similar questions