Math, asked by allakondakumar353, 1 year ago

iv) Each question carties 4 Marks.
14. A) Show that the cube of any positive integer is in the form of either 5m or 5m + 1 or
5m + 2 or 5m + 3 or 5m + 4.​

Answers

Answered by omprasad25june
1

Answer:

It need to be proved. The proving is given below:

Step-by-step explanation:

Let x be any positive integer. Then, it is of the form 5q or, 5q+1 or, 5q+2 or,5q+3 or,5q+4. So, we have the following cases:

CASE 1 When x = 5q : In this case we have

             x^{3} = (5q)^{3} = 125q^{3} = 5(25q^{3}) = 5m, where m=25q^{3}

CASE 2 When x = 5q + 1 : In this case we have

             x^{3} = (5q+1)^{3}

             x^{3} = 125q^3 + 75q^2 + 15q + 1

             x^{3} = 5q(25q^2 + 15q + 3) + 1

             x^{3} = 5m + 1, where m=q(25q^2 + 15q + 3)

CASE 3 When x = 5q + 2 : In this case we have

             x^{3} = (5q + 2)^3

             x^{3} = 125q^3 + 75q^2 + 15q + 8

             x^{3} = 5q(25q^2 + 15q + 3) + 8

             x^{3} = 5m + 2, where m=q(5q^2 + 15q + 3) + 6

CASE 4 When x = 5q + 3 : In this case we have

             x^{3} = (5q + 3)^3

             x^{3} = 125q^3 + 75q^2 + 15q + 27

             x^{3} = 5q(25q^2 + 15q + 3) + 27

             x^{3} = 5m + 3, where m=q(25q^2 + 15q + 3) + 24

CASE 5 When x = 5q + 4 : In this case we have

             x^{3} = (5q + 4)^3

             x^{3} = 125q^3 + 75q^2 + 15q + 64

             x^{3} = 5q(25q^2 + 75q + 3 + 64)

             x^{3} = 5m+4, where m=q(25q^2 + 15q + 3) + 60

Hence x is either of the 5q or, 5q+1 or, 5q+2 or,5q+3 or,5q+4.

                          THANK YOU

Answered by muskan2807
2

Answer:

Just see weather this helps you

Attachments:
Similar questions