Math, asked by rachitsharma21705, 5 months ago


(iv) given a = 15, S10= 125, find d and a10​

Answers

Answered by tanishkabhosale0923
2

Step-by-step explanation:

a

3

=15,s

10

=125

a

3

=a+(3−1)d

15=a+2d

a=15−2d

s

10

=

2

10

[2a+(10−1)d]

125=5[2a+9d]

25=2a+9d

25=2(15−2d)+9d

25=30−4d+9d

5d=−5

d=−1

a=15−2×(−1)

a=17

a

10

=a+(10−1)(−1)

a

10

=17−9

a

10

=26

Answered by Anonymous
5

\large  \sf\underline{ \underline{ \red{given : }}} \\  \\

  • a = 15

  • S(10) = 135

  • n = 10

 \\  \\  \large  \sf\underline{ \underline{ \red{to \: find : }}} \\  \\

  • Common difference (d)

  • 10th term a(10)

 \\  \\ \large  \sf\underline{ \underline{ \red{to \: know : }}} \\  \\

 \boxed{ \tt{s_{n} =  \frac{n}{2}(1st \: term \:  + last \: term  }}

 \boxed{ \tt{ a_{n} = a + (n - 1)d}}

 \ \\ \large  \sf\underline{ \underline{ \red{solution : }}} \\  \\

  • Sum of first 10 terms is 125.

  • 1st term is 15.

  • There are 10 terms.

So, putting these values in formula ,

 \\  \sf{125 =  \frac{ { \cancel{10}} \: ^{5} }{ { \cancel2} \: ^{1} } (15 + a_{10})} \\  \\  \\  \sf{125 = 5(15 +  a_{10}) } \\  \\  \\  \sf{ \frac{ { \cancel{125}} \: ^{25} }{ { \cancel5} \: ^{1} } = 15 +  a_{10} } \\  \\  \sf{25 = 15 +   a_{10} } \\  \\  \\   \boxed{\sf{  \pink{a_{10} = 10  }}} \\

And ,

  • a(n) = a + (n-1)d

 \\  \sf{ a_{10} = 15 + (10 - 1)d} \\  \\  \sf{ 10 =15 + 9d } \\  \\  \sf{10 - 15 = 9d} \\  \\  \sf{9d =  - 5} \\   \\  \boxed{{ \sf{{ \pink{d =  \frac{ - 5}{9} }}}}}

 \\  \\

Hence , a10 is 10 and d is -5/9.

Similar questions