(iv) If 3 sin 0 = 4 cos 0, then find the the value of tan 0.
Answers
Answer:
3sin0=4cos0
sin0/cos0=4/3
Tan0=4/3
Answer:
Given,
Given,3tanθ=4
Given,3tanθ=4tanθ=
Given,3tanθ=4tanθ= 3
Given,3tanθ=4tanθ= 34
Given,3tanθ=4tanθ= 34
Given,3tanθ=4tanθ= 34
Given,3tanθ=4tanθ= 34 2cosθ+sinθ
Given,3tanθ=4tanθ= 34 2cosθ+sinθ4cosθ−sinθ
Given,3tanθ=4tanθ= 34 2cosθ+sinθ4cosθ−sinθ
Given,3tanθ=4tanθ= 34 2cosθ+sinθ4cosθ−sinθ
Given,3tanθ=4tanθ= 34 2cosθ+sinθ4cosθ−sinθ =
Given,3tanθ=4tanθ= 34 2cosθ+sinθ4cosθ−sinθ = 2cosθ+sinθ
Given,3tanθ=4tanθ= 34 2cosθ+sinθ4cosθ−sinθ = 2cosθ+sinθ4cosθ−sinθ
Given,3tanθ=4tanθ= 34 2cosθ+sinθ4cosθ−sinθ = 2cosθ+sinθ4cosθ−sinθ
Given,3tanθ=4tanθ= 34 2cosθ+sinθ4cosθ−sinθ = 2cosθ+sinθ4cosθ−sinθ ×
Given,3tanθ=4tanθ= 34 2cosθ+sinθ4cosθ−sinθ = 2cosθ+sinθ4cosθ−sinθ × cosθ
Given,3tanθ=4tanθ= 34 2cosθ+sinθ4cosθ−sinθ = 2cosθ+sinθ4cosθ−sinθ × cosθcosθ
Given,3tanθ=4tanθ= 34 2cosθ+sinθ4cosθ−sinθ = 2cosθ+sinθ4cosθ−sinθ × cosθcosθ
Given,3tanθ=4tanθ= 34 2cosθ+sinθ4cosθ−sinθ = 2cosθ+sinθ4cosθ−sinθ × cosθcosθ ----------( Multiply and divide by cosθ )
Given,3tanθ=4tanθ= 34 2cosθ+sinθ4cosθ−sinθ = 2cosθ+sinθ4cosθ−sinθ × cosθcosθ ----------( Multiply and divide by cosθ )=
Given,3tanθ=4tanθ= 34 2cosθ+sinθ4cosθ−sinθ = 2cosθ+sinθ4cosθ−sinθ × cosθcosθ ----------( Multiply and divide by cosθ )= cosθ
Given,3tanθ=4tanθ= 34 2cosθ+sinθ4cosθ−sinθ = 2cosθ+sinθ4cosθ−sinθ × cosθcosθ ----------( Multiply and divide by cosθ )= cosθ2cosθ+sinθ
Given,3tanθ=4tanθ= 34 2cosθ+sinθ4cosθ−sinθ = 2cosθ+sinθ4cosθ−sinθ × cosθcosθ ----------( Multiply and divide by cosθ )= cosθ2cosθ+sinθ
Given,3tanθ=4tanθ= 34 2cosθ+sinθ4cosθ−sinθ = 2cosθ+sinθ4cosθ−sinθ × cosθcosθ ----------( Multiply and divide by cosθ )= cosθ2cosθ+sinθ
Given,3tanθ=4tanθ= 34 2cosθ+sinθ4cosθ−sinθ = 2cosθ+sinθ4cosθ−sinθ × cosθcosθ ----------( Multiply and divide by cosθ )= cosθ2cosθ+sinθ cosθ
Given,3tanθ=4tanθ= 34 2cosθ+sinθ4cosθ−sinθ = 2cosθ+sinθ4cosθ−sinθ × cosθcosθ ----------( Multiply and divide by cosθ )= cosθ2cosθ+sinθ cosθ4cosθ−sinθ
Given,3tanθ=4tanθ= 34 2cosθ+sinθ4cosθ−sinθ = 2cosθ+sinθ4cosθ−sinθ × cosθcosθ ----------( Multiply and divide by cosθ )= cosθ2cosθ+sinθ cosθ4cosθ−sinθ
Given,3tanθ=4tanθ= 34 2cosθ+sinθ4cosθ−sinθ = 2cosθ+sinθ4cosθ−sinθ × cosθcosθ ----------( Multiply and divide by cosθ )= cosθ2cosθ+sinθ cosθ4cosθ−sinθ
Given,3tanθ=4tanθ= 34 2cosθ+sinθ4cosθ−sinθ = 2cosθ+sinθ4cosθ−sinθ × cosθcosθ ----------( Multiply and divide by cosθ )= cosθ2cosθ+sinθ cosθ4cosθ−sinθ
Given,3tanθ=4tanθ= 34 2cosθ+sinθ4cosθ−sinθ = 2cosθ+sinθ4cosθ−sinθ × cosθcosθ ----------( Multiply and divide by cosθ )= cosθ2cosθ+sinθ cosθ4cosθ−sinθ
Given,3tanθ=4tanθ= 34 2cosθ+sinθ4cosθ−sinθ = 2cosθ+sinθ4cosθ−sinθ × cosθcosθ ----------( Multiply and divide by cosθ )= cosθ2cosθ+sinθ cosθ4cosθ−sinθ =
Given,3tanθ=4tanθ= 34 2cosθ+sinθ4cosθ−sinθ = 2cosθ+sinθ4cosθ−sinθ × cosθcosθ ----------( Multiply and divide by cosθ )= cosθ2cosθ+sinθ cosθ4cosθ−sinθ = 2+
Given,3tanθ=4tanθ= 34 2cosθ+sinθ4cosθ−sinθ = 2cosθ+sinθ4cosθ−sinθ × cosθcosθ ----------( Multiply and divide by cosθ )= cosθ2cosθ+sinθ cosθ4cosθ−sinθ = 2+ cosθ
Given,3tanθ=4tanθ= 34 2cosθ+sinθ4cosθ−sinθ = 2cosθ+sinθ4cosθ−sinθ × cosθcosθ ----------( Multiply and divide by cosθ )= cosθ2cosθ+sinθ cosθ4cosθ−sinθ = 2+ cosθsin-cosθ
cosθsinθ
cosθsinθ=2+tanθ
4−tanθ=2+344− 34=6+4
=6+412−4= 108= 54