Math, asked by pg604649, 18 days ago

(iv) If 3 sin 0 = 4 cos 0, then find the the value of tan 0.​

Answers

Answered by mrstark94
0

Answer:

3sin0=4cos0

sin0/cos0=4/3

Tan0=4/3

Answered by swaransingh49957
4

Answer:

Given,

Given,3tanθ=4

Given,3tanθ=4tanθ=

Given,3tanθ=4tanθ= 3

Given,3tanθ=4tanθ= 34

Given,3tanθ=4tanθ= 34

Given,3tanθ=4tanθ= 34

Given,3tanθ=4tanθ= 34 2cosθ+sinθ

Given,3tanθ=4tanθ= 34 2cosθ+sinθ4cosθ−sinθ

Given,3tanθ=4tanθ= 34 2cosθ+sinθ4cosθ−sinθ

Given,3tanθ=4tanθ= 34 2cosθ+sinθ4cosθ−sinθ

Given,3tanθ=4tanθ= 34 2cosθ+sinθ4cosθ−sinθ =

Given,3tanθ=4tanθ= 34 2cosθ+sinθ4cosθ−sinθ = 2cosθ+sinθ

Given,3tanθ=4tanθ= 34 2cosθ+sinθ4cosθ−sinθ = 2cosθ+sinθ4cosθ−sinθ

Given,3tanθ=4tanθ= 34 2cosθ+sinθ4cosθ−sinθ = 2cosθ+sinθ4cosθ−sinθ

Given,3tanθ=4tanθ= 34 2cosθ+sinθ4cosθ−sinθ = 2cosθ+sinθ4cosθ−sinθ ×

Given,3tanθ=4tanθ= 34 2cosθ+sinθ4cosθ−sinθ = 2cosθ+sinθ4cosθ−sinθ × cosθ

Given,3tanθ=4tanθ= 34 2cosθ+sinθ4cosθ−sinθ = 2cosθ+sinθ4cosθ−sinθ × cosθcosθ

Given,3tanθ=4tanθ= 34 2cosθ+sinθ4cosθ−sinθ = 2cosθ+sinθ4cosθ−sinθ × cosθcosθ

Given,3tanθ=4tanθ= 34 2cosθ+sinθ4cosθ−sinθ = 2cosθ+sinθ4cosθ−sinθ × cosθcosθ ----------( Multiply and divide by cosθ )

Given,3tanθ=4tanθ= 34 2cosθ+sinθ4cosθ−sinθ = 2cosθ+sinθ4cosθ−sinθ × cosθcosθ ----------( Multiply and divide by cosθ )=

Given,3tanθ=4tanθ= 34 2cosθ+sinθ4cosθ−sinθ = 2cosθ+sinθ4cosθ−sinθ × cosθcosθ ----------( Multiply and divide by cosθ )= cosθ

Given,3tanθ=4tanθ= 34 2cosθ+sinθ4cosθ−sinθ = 2cosθ+sinθ4cosθ−sinθ × cosθcosθ ----------( Multiply and divide by cosθ )= cosθ2cosθ+sinθ

Given,3tanθ=4tanθ= 34 2cosθ+sinθ4cosθ−sinθ = 2cosθ+sinθ4cosθ−sinθ × cosθcosθ ----------( Multiply and divide by cosθ )= cosθ2cosθ+sinθ

Given,3tanθ=4tanθ= 34 2cosθ+sinθ4cosθ−sinθ = 2cosθ+sinθ4cosθ−sinθ × cosθcosθ ----------( Multiply and divide by cosθ )= cosθ2cosθ+sinθ

Given,3tanθ=4tanθ= 34 2cosθ+sinθ4cosθ−sinθ = 2cosθ+sinθ4cosθ−sinθ × cosθcosθ ----------( Multiply and divide by cosθ )= cosθ2cosθ+sinθ cosθ

Given,3tanθ=4tanθ= 34 2cosθ+sinθ4cosθ−sinθ = 2cosθ+sinθ4cosθ−sinθ × cosθcosθ ----------( Multiply and divide by cosθ )= cosθ2cosθ+sinθ cosθ4cosθ−sinθ

Given,3tanθ=4tanθ= 34 2cosθ+sinθ4cosθ−sinθ = 2cosθ+sinθ4cosθ−sinθ × cosθcosθ ----------( Multiply and divide by cosθ )= cosθ2cosθ+sinθ cosθ4cosθ−sinθ

Given,3tanθ=4tanθ= 34 2cosθ+sinθ4cosθ−sinθ = 2cosθ+sinθ4cosθ−sinθ × cosθcosθ ----------( Multiply and divide by cosθ )= cosθ2cosθ+sinθ cosθ4cosθ−sinθ

Given,3tanθ=4tanθ= 34 2cosθ+sinθ4cosθ−sinθ = 2cosθ+sinθ4cosθ−sinθ × cosθcosθ ----------( Multiply and divide by cosθ )= cosθ2cosθ+sinθ cosθ4cosθ−sinθ

Given,3tanθ=4tanθ= 34 2cosθ+sinθ4cosθ−sinθ = 2cosθ+sinθ4cosθ−sinθ × cosθcosθ ----------( Multiply and divide by cosθ )= cosθ2cosθ+sinθ cosθ4cosθ−sinθ

Given,3tanθ=4tanθ= 34 2cosθ+sinθ4cosθ−sinθ = 2cosθ+sinθ4cosθ−sinθ × cosθcosθ ----------( Multiply and divide by cosθ )= cosθ2cosθ+sinθ cosθ4cosθ−sinθ =

Given,3tanθ=4tanθ= 34 2cosθ+sinθ4cosθ−sinθ = 2cosθ+sinθ4cosθ−sinθ × cosθcosθ ----------( Multiply and divide by cosθ )= cosθ2cosθ+sinθ cosθ4cosθ−sinθ = 2+

Given,3tanθ=4tanθ= 34 2cosθ+sinθ4cosθ−sinθ = 2cosθ+sinθ4cosθ−sinθ × cosθcosθ ----------( Multiply and divide by cosθ )= cosθ2cosθ+sinθ cosθ4cosθ−sinθ = 2+ cosθ

Given,3tanθ=4tanθ= 34 2cosθ+sinθ4cosθ−sinθ = 2cosθ+sinθ4cosθ−sinθ × cosθcosθ ----------( Multiply and divide by cosθ )= cosθ2cosθ+sinθ cosθ4cosθ−sinθ = 2+ cosθsin-cosθ

cosθsinθ

cosθsinθ=2+tanθ

4−tanθ=2+344− 34=6+4

=6+412−4= 108= 54

Similar questions