Math, asked by santosh9681, 3 months ago


(iv) If p(10,r) ==5040 then find the value of r​

Answers

Answered by mathdude500
5

\large\underline{\sf{Given- }}

 \sf \:  \: P(10,r) \:  =  \: 5040

\large\underline{\sf{To\:Find - }}

 \sf \:  \: the \: value \: of \: r

\begin{gathered}\Large{\sf{{\underline{Formula \: Used - }}}}  \end{gathered}

\boxed{\sf \: P(n, \: r)  \:  =  \: \:^{n}P_r=\dfrac{n!}{(n-r)!}}

\large\underline{\sf{Solution-}}

Given that

\rm :\longmapsto\: P(10,r) \:  =  \: 5040

\rm :\longmapsto\:\dfrac{10!}{(10 - r)!} = 5040

\rm :\longmapsto\:\dfrac{10 \times 9 \times 8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1}{(10 - r)!} = 5040

\rm :\longmapsto\:\dfrac{\cancel{5040  }\times 6!}{(10 - r)!} = \cancel{5040}

\rm :\longmapsto\:(10 - r)! = 6!

So, on comparing,

\rm :\longmapsto\:10 - r = 6

\bf\implies \:r \:  =  \: 4

Additional Information :-

1. \:  \:  \: \boxed{\sf \:^{n}C_r=\dfrac{n!}{(n-r)!\times r!}}

2. \:  \:  \: \boxed{\sf \:^{n}C_r=\dfrac{1}{ r!} \times P(n, \: r)}

3. \:  \:  \: \boxed{\sf \:^{n}P_r=\dfrac{n}{r} \:  \: ^{n - 1}P_{r - 1}}

4. \:  \:  \:  \boxed{ \sf \: ^{n}C_r \:  +  \: ^{n}C_{r - 1}  \: =  \: ^{n + 1}C_r}

Similar questions