Math, asked by beranabanita48, 29 days ago

(iv) If the ratio of curved surface areas of two solid spheres is 16:9, the ratio of their volumes is
(a) 64:27 (b) 4:3 (c) 27:64 (d) 3:4​

Answers

Answered by mathdude500
72

\large\underline{\sf{Solution-}}

Let assume that radius of first sphere be 'x' units and radius of second sphere be 'y' units.

Let assume that

\rm :\longmapsto\:S_1 \: be \: surface \: area \: of \: first \: sphere

and

\rm :\longmapsto\:S_2 \: be \: surface \: area \: of \: second \: sphere

Let further assume that,

\rm :\longmapsto\:V_1 \: be \: volume\: of \: first \: sphere

and

\rm :\longmapsto\:V_2 \: be \: volume\: of \: second \: sphere

We know,

Surface area and Volume of sphere of radius r is given by

 \red{\boxed{ \rm{ \: Surface \: area_{(sphere)} \:  =  \: 4 \: \pi \:  {r}^{2}  \:  \: }}}

and

 \red{\boxed{ \rm{ \: Volume_{(sphere)} \:  =  \:  \frac{4}{3}  \: \pi \:  {r}^{3}  \:  \: }}}

According to statement,

\purple{\rm :\longmapsto\: \bf{ \: \dfrac{S_1}{S_2}  = \dfrac{16}{9} }}

\purple{\rm :\longmapsto\: \bf{ \: \dfrac{4\pi {x}^{2} }{4\pi {y}^{2} }  = \dfrac{16}{9} }}

\purple{\rm :\longmapsto\: \bf{ \: \dfrac{ {x}^{2} }{{y}^{2} }  = \dfrac{16}{9} }}

\purple{\rm :\longmapsto\: \bf{ \: \dfrac{ {x}}{{y}}  = \dfrac{4}{3} }}

On cubing both sides, we get

\purple{\rm :\longmapsto\: \bf{ \: \dfrac{ { {x}^{3} }}{{ {y}^{3} }}  = \dfrac{64}{27} }}

can be rewritten as

\purple{\rm :\longmapsto\: \bf{ \: \dfrac{ \dfrac{4}{3} \pi \: { {x}^{3} }}{\dfrac{4}{3} \pi \: { {y}^{3} }}  = \dfrac{64}{27} }}

\purple{\rm :\longmapsto\: \bf{ \: \dfrac{V_1 }{V_2}  = \dfrac{64}{27} }}

\purple{ \bf\implies\bf{ \: V_1 : V_2 \:  =  \: 64 : 27 \:  \: }}

  • Hence, Option ( a ) is correct.

More information :

Volume of cylinder = πr²h

T.S.A of cylinder = 2πrh + 2πr²

Volume of cone = ⅓ πr²h

C.S.A of cone = πrl

T.S.A of cone = πrl + πr²

Volume of cuboid = l × b × h

C.S.A of cuboid = 2(l + b)h

T.S.A of cuboid = 2(lb + bh + lh)

C.S.A of cube = 4a²

T.S.A of cube = 6a²

Volume of cube = a³

Volume of sphere = 4/3πr³

Surface area of sphere = 4πr²

Volume of hemisphere = ⅔ πr³

C.S.A of hemisphere = 2πr²

T.S.A of hemisphere = 3πr²

Answered by Anonymous
1

Answer:

B) 16:9

Step-by-step explanation:

Volume of sphere = \frac{4}{3\\}  * π * r^3

Ratio of volume of 2 spheres =   4/3 * pi * r^3 / 4/3 * pi * R^3  

= r^3 / R^3

 The ratio is given 64:27  

r/R = 4/3  

Curved surface area of sphere = 4πr^2  

Ratio of their CSA = r^2 / R^2  

= 16:9

thanks..

Similar questions