(iv) If u + iv= 2+i /z+3 and z=x+iy then find u, v
Answers
Answered by
6
Answer:
z=e
iα
and w=e
iβ
z
2
+w
2
=1⇒e
i2α
+e
i2β
=1+i0
⇒cos2α+cos2β=1 and sin2α+sin2β=0
⇒2cos(α+β)cos(α−β)=1 .............eq(i)
and 2sin(α+β)cos(α−β)=0 ................eq(ii)
Now Dividing eq(ii) by eq(i)
⇒tan(α+β)=0⇒α+β=nπ
for α+β=0 ,
we have cos2α=
2
1
⇒ 4 pairs (α,β) for α∈[0,2π) [Note: 2 pairs (α,β) + 2 pairs (β,α)= 4 pairs]
for α+β=π ,
we have cos2α=
2
1
⇒ 4 pairs (α,β) for α∈[0,2π) [Note: 2 pairs (α,β) + 2 pairs (β,α)= 4 pairs]
∴ Total number of ordered pairs (z,w) is 8 pairs
Step-by-step explanation:
please mark as brainliest
Similar questions