iv)
It seca
sec
siñ
1-cOS
Answers
Answered by
1
Answer:
Step-by-step explanation:
Given that,
\frac{1 + sec a}{sec a} = \frac{sin 2a}{1 - cos a}
Let, L.H.S
\frac{1 + sec a}{sec a}
\frac{1 + (\frac{1}{cos a})}{\frac{1}{cos a}}]
\frac{\frac{cos a + 1}{cos a}}{\frac{1}{cos a}}
cos a + 1
Multiple and divide with (1 - cos a)
(1 + cos a)\times \frac{1 - cos a}{1 - cos a}
\frac{1 - cos^2 a}{1 - cos a}
\frac{sin 2a}{1 - cos a}
R.H.S
Answered by
0
Answer:
Let, L.H.S
\frac{1 + sec a}{sec a}
\frac{1 + (\frac{1}{cos a})}{\frac{1}{cos a}}]
\frac{\frac{cos a + 1}{cos a}}{\frac{1}{cos a}}
cos a + 1
Multiple and divide with (1 - cos a)
(1 + cos a)\times \frac{1 - cos a}{1 - cos a}
\frac{1 - cos^2 a}{1 - cos a}
\frac{sin 2a}{1 - cos a}
R.H.S
Similar questions