iv) sin [(n+1)A].sin((n+2)A]+cos[(n+1)A].
cos[(n+2)A]=cos A
Answers
To prove-->
Sin(n+1)A Sin(n+2)A + Cos(n+1)A
Cos(n+2)A = CosA
Proof --->
We have a formula
Cos(x - y ) = Cosx Cosy - Sinx Siny
Now , LHS
=Sin(n+1)A Sin(n+2)A + Cos(n+1)A
Cos(n+2)A
Let ( n + 1 )A = x , ( n + 2 )A = y
= Sin x Sin y + Cosx Cos y
= Cos x Cos y + Sin x Sin y
= Cos ( x - y )
Putting values of x and y we get
= Cos { ( n + 1 )A - ( n + 2 ) A }
= Cos { ( n + 1 ) - ( n + 2 ) } A
= Cos ( n + 1 - n - 2 ) A
= Cos ( - 1 ) A
= Cos ( - A )
We know that , Cos( - θ ) = Cosθ
= Cos A = RHS
Additional information--->
1) Cos(A + B ) =CosA CosB - SinA SinB
2) Sin(A + B ) = SinA CosB + CosA SinB
3) Sin(A - B ) = SinA CosB - CosA SinB
4) Sin2A = 2 SinA CosA
5) Cos2A = Cos²A - Sin²A
= 2 Cos²A - 1
= 1 - 2 Sin²A