Math, asked by ptiwari3151, 1 month ago

(iv) (x2 - 4x)(x2 - 4x - 1) – 20​

Answers

Answered by akeertana503
19

\huge\sf\underline\red{Question}

  • (x² - 4x)(x²- 4x - 1) – 20

\huge\sf\underline\red{Answer}

(x {}^{2}  - 4x)(x {}^{2}  - 4x - 1) - 20 \\  \\

______________________________________

______________________________________

LET x²+4x BE 'P'

p(p + 1) - 20 \\  \\ p {}^{2}  - p - 20 \\  \\ p {}^{2}  - 5p + 4p - 20 \\  \\ p(p - 5) + 4(p - 5) \\  \\ = ( p + 4) \:  \: (p - 5)

______________________________________

______________________________________

NOW, PUT P AS x²-4x

(x {}^{2}  - 4x + 4)( { {x}}^{2}  - 4x -   5) \\  \\  = (x - 2) {}^{2} (x + 1)(x - 5)

______________________________________

______________________________________

\bf\underbrace\red{answer:}-\small\fbox\pink{(x-2)²(x+1)(x-5)}

Answered by mathdude500
4

Appropriate Question :-

 \sf \: Factorize :  \:  ({x}^{2}  - 4x)( {x}^{2} - 4x - 1) - 20

\large\underline{\sf{Solution-}}

Given expression is

\rm :\longmapsto\:( {x}^{2} - 4x)( {x}^{2}  - 4x - 1) - 20

Let we assume that,

\red{ \boxed{ \sf{ \: {x}^{2} - 4x = y}}}

So, above expression can be rewritten as

\rm \:  =  \: y(y - 1) - 20

\rm \:  =  \:  {y}^{2} - y - 20

Now, using the concept of splitting of middle terms, we have

\rm \:  =  \:  {y}^{2} -5y + 4y - 20

\rm \:  =  \: y(y - 5) + 4(y - 5)

\rm \:  =  \: \:(y - 5)(y + 4)

\rm \:  =  \: ( {x}^{2} - 4x  - 5)( {x}^{2} - 4x  + 4)

Again, on splitting the middle terms, we get

\rm \:  =  \: ( {x}^{2} - 5x + x  - 5)( {x}^{2} - 2x - 2x  + 4)

\rm \:  =  \: \bigg[x(x - 5) + 1(x - 5)\bigg]\bigg[x(x - 2) - 2(x - 2)\bigg]

\rm \:  =  \: (x - 5)(x + 1)(x - 2)(x - 2)

Hence,

\red{ \boxed{ \sf{ \:( {x}^{2} - 4x)( {x}^{2} - 4x - 1) - 20   =  \: (x - 5)(x + 1)(x - 2)(x - 2)}}}

Additional Information :-

More Identities to know :-

\red{ \boxed{ \sf{ \: {(x + y)}^{2} =  {x}^{2} +  {y}^{2} + 2xy}}}

\red{ \boxed{ \sf{ \: {(x  -  y)}^{2} =  {x}^{2} +  {y}^{2}  -  2xy}}}

\red{ \boxed{ \sf{ \: {(x  -  y)}^{3} =  {x}^{3}  -  {y}^{3}  -  3xy(x - y)}}}

\red{ \boxed{ \sf{ \: {(x + y)}^{3} =  {x}^{3} + {y}^{3} + 3xy(x + y)}}}

\green{ \boxed{ \sf{ \: {(x + y)}^{2}  -  {(x - y)}^{2}  = 4xy}}}

\green{ \boxed{ \sf{ \: {(x + y)}^{2}  =   {(x - y)}^{2} +  4xy}}}

\green{ \boxed{ \sf{ \: {(x -  y)}^{2}  =   {(x  + y)}^{2} -  4xy}}}

\blue{ \boxed{ \sf{ \: {x}^{2} -  {y}^{2} = (x + y)(x - y)}}}

\blue{ \boxed{ \sf{ \: {x}^{3} -  {y}^{3} = (x - y)( {x}^{2}  +  xy +  {y}^{2})}}}

\blue{ \boxed{ \sf{ \: {x}^{3} +  {y}^{3} = (x + y)( {x}^{2} - xy +  {y}^{2})}}}

\blue{ \boxed{ \sf{ \: {x}^{4} -  {y}^{4} = (x - y)(x + y)( {x}^{2} +  {y}^{2})}}}

Similar questions