Math, asked by Heli1ia, 3 months ago

Ivan bought a second-hand scooter for Rs. 38,000 and spent Rs. 2000 on repairs.

After few years, he sold it at the profit of 5%. At what price did he sell the

scooter?​

Answers

Answered by MasterDhruva
5

Given :-

Cost price of a scooter :- ₹38000

Cost spent on it's repairs :- ₹2000

\:

To Find :-

The selling price of that scooter if 5% of progit is made.

\:

Formula required :-

{\large \dashrightarrow \orange{\boxed{\tt \gray{\dfrac{(100 + Gain \bf\%)}{100} \times CP}}}}

\:

How to do :-

Here, we are given with the cost price and the cost spent on it's repairs of a second-hand scooter. We are also given that it is sold after few years at a gain of 5%. We are asked to find the selling price of that scooter. So, first we should find the total cost price of the scooter by adding the given cost price and the cost spent on its repairs. The obtained answer will be the total cost price. Later, we can find the selling price by using the given formula.

\:

Solution :-

Total cost price :-

{\tt \leadsto 38000 + 2000}

{\tt \leadsto Rs \: \: 40000}

\:

Now,

Selling price of the scooter :-

{\tt \leadsto \dfrac{(100 + 5)}{100} \times 40000}

{\tt \leadsto \cancel \dfrac{105}{100} \times 40000 = \dfrac{21}{20} \times 40000}

{\tt \leadsto \dfrac{21}{\cancel{20}} \times \cancel{40000} = \dfrac{21}{1} \times 2000}

{\tt \leadsto \dfrac{21 \times 2000}{1} = \dfrac{42000}{1}}

{\tt \leadsto \cancel \dfrac{42000}{1} = \boxed{\tt Rs \: \: 42000}}

\Huge\therefore The selling price of the scooter is 42000.

━━━━━━━━━━━━━━━━━━━━━━

\dashrightarrow Some related formulas :-

\small\boxed{\begin{array}{cc}\large\sf\dag \: {\underline{More \: Formulae}} \\ \\   \bigstar \:  \sf{Gain = S.P - C.P} \\ \\ \bigstar \:\sf{Loss = C.P - S.P} \\  \\ \bigstar \:  \sf{Gain \: \% = \Bigg( \dfrac{Gain}{C.P} \times 100 \Bigg)\%} \\  \\ \bigstar \:  \sf{loss \: \% = \Bigg( \dfrac{loss}{C.P} \times 100 \Bigg)\%} \\  \\ \bigstar \:  \sf{C.P =\dfrac{100}{100+Gain\%} \times S.P}  \\  \\\bigstar \:  \sf{S.P =  \dfrac{100-loss\%}{100} \times C.P}  \\  \\ \bigstar \:  \sf{C.P =\dfrac{100}{100-loss\%} \times S.P}\end{array}}

Answered by IamJaat
44

Given :-

  • Cost price of a scooter :- ₹38000

  • Cost spent on it's repairs :- ₹2000

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ

To Find :-

  • The selling price of that scooter if 5% of progit is made.

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ

Formula required :-

{\large {\boxed {\sf \purple{\dfrac{(100 + Gain  \%)}{100} \times CP}}}}

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ

Solution :-

Total cost price :-

{\sf \implies 38000 + 2000}

{\sf \implies Rs \: \: 40000}

Selling price of the scooter :-

{\sf \implies \dfrac{(100 + 5)}{100} \times 40000}

{\sf \implies \cancel \dfrac{105}{100} \times 40000 = \dfrac{21}{20} \times 40000}

{\sf \implies \dfrac{21}{\cancel{20}} \times \cancel{40000} = \dfrac{21}{1} \times 2000}

{\sf \implies \dfrac{21 \times 2000}{1} = \dfrac{42000}{1}}

{\sf \implies \cancel \dfrac{42000}{1} = \boxed{\tt Rs \: \: 42000}}

∴ The selling price of the scooter is ₹42000.

━━━━━━━━━━━━━━━━━━━━━━

\begin{gathered}\small\boxed{\begin{array}{cc}\large\sf\ \: {\underline{Related \: Formulae}} \\ \\ \bigstar \: \sf{Gain = S.P - C.P} \\ \\ \bigstar \:\sf{Loss = C.P - S.P} \\ \\ \bigstar \: \sf{Gain \: \% = \Bigg( \dfrac{Gain}{C.P} \times 100 \Bigg)\%} \\ \\ \bigstar \: \sf{loss \: \% = \Bigg( \dfrac{loss}{C.P} \times 100 \Bigg)\%} \\ \\ \bigstar \: \sf{C.P =\dfrac{100}{100+Gain\%} \times S.P} \\ \\\bigstar \: \sf{S.P = \dfrac{100-loss\%}{100} \times C.P} \\ \\ \bigstar \: \sf{C.P =\dfrac{100}{100-loss\%} \times S.P}\end{array}}\end{gathered}

Similar questions