(ix) (cosec A - sin A)(sec A - cos A) = 1/tan A + cot A
[Hint: Simplify LHS and RHS separately]
Answers
Answered by
24
Answer:
Step-by-step explanation:
(1/sin-sin)(1/cos-cos)
(1-sin^2/sin)(1-cos^2/cos)
(Cos^2/sin)(sin^2/cos)
Cos.sin........(LHS)
1/sin/cos+cos/sin
1/sin^2+cos^2/cos.sin
1/1/cos.sin
Cos.sin......(rhs)
Hence proved
LHS=RHS
Similar questions