Math, asked by DR360, 10 months ago

(ix) cot-¹[√1-sinx + √1+ sinx /
√1- sinx -
√1+ sinx ]​

Answers

Answered by kuldeep20941
4

Answer:

=====================================

Select My Answer Brainliest Only if It helps you....

See the attachment my friend....

=====================================

Attachments:
Answered by anamika0728
0

Answer:

π - x/2

Step-by-step explanation:

The question is cot^{-1} (\frac{\sqrt{1-sinx}+\sqrt{1+sinx}  }{\sqrt{1-sinx}-\sqrt{1+sinx}  } ) \\

Lets give a substitution for\sqrt{1 +sinx\\}

We know,

cos^{2}x + sin^{2} x = 1

sin2x = 2sinx cosx

So,

1 + sinx = cos^{2}x + sin^{2} x + 2sin\frac{x}{2}cos\frac{x}{2} = (cos\frac{x}{2} +sin\frac{x}{2} )^{2}

\sqrt{1+sinx} = (cos\frac{x}{2}+sin\frac{x}{2}  ) ____(1)

Similarly, \sqrt{1-sinx} = (cos\frac{x}{2} - sin\frac{x}{2}) ____(2)

Substituting in the question,

cot^{-1} (\frac{\sqrt{1-sinx}+\sqrt{1+sinx}  }{\sqrt{1-sinx}-\sqrt{1+sinx}  } ) \\

= cot^{-1} ( \frac{ (cos\frac{x}{2}-sin\frac{x}{2} )+ (scos\frac{x}{2}+sin\frac{x}{2}  )}{\ (cos\frac{x}{2}-sin\frac{x}{2} )- (cos\frac{x}{2}+sin\frac{x}{2}  )})

= cot^{-1} ( \frac{ cos\frac{x}{2}-sin\frac{x}{2} + cos\frac{x}{2}+sin\frac{x}{2} }{\ cos\frac{x}{2}-sin\frac{x}{2} - cos\frac{x}{2}-sin\frac{x}{2}  })

= cot^{-1} ( \frac{2cos\frac{x}{2} }{-2sin\frac{x}{2} }  )

= cot^{-1} ( - cot\frac{x}{2} )

We know,

cot^{-1} (-x) = Pi - cot^{-1}x

So, cot^{-1} ( - cot\frac{x}{2} ) = Pi - cot^{-1}(cot\frac{x}{2} ) = Pi - \frac{x}{2}

So, Answer is Pi - x/2

Similar questions