Math, asked by nkp7290, 4 days ago

(ix) If 3 ^ (x - 1) - 3 ^ (x - 3) = 8 then the value of (x ^ 2 - x + 4) * i_{5} (D) 15 (C) 12 (B) 8 (A) 10​

Answers

Answered by Anonymous
71

 \large \underline{ \underline{ \text{Question:}}} \\

If 3^(x - 1) - 3^(x - 3) = 8 then the value of: x² - x + 4.

  • (A) 10

  • (B) 8

  • (C) 12

  • (D) 15

 \large \underline{ \underline{ \text{Solution:}}} \\

We have,

  •  {3}^{(x - 1)}  -  {3}^{(x - 3)}  = 8 \\

Solving for 'x',

\implies  {3}^{(x - 1)}  -  {3}^{(x - 3)}  = 8 \\  \\  \bigg [ {x}^{(a - b)} =  \frac{ {x}^{a} }{ {x}^{b} }   \bigg] \\  \\ \implies  \frac{ {3}^{x} }{ {3}^{1} }  -  \frac{ {3}^{x} }{ {3}^{3} }  = 8 \\  \\ \implies  \frac{ {3}^{x} }{3}  -  \frac{ {3}^{x} }{27}  = 8 \\  \\ \implies  \frac{9( {3}^{x} ) -  {3}^{x} }{27}  = 8 \\  \\ \implies 9( {3}^{x} ) -  {3}^{x}  = 8 \times 27 \\  \\ \implies  {3}^{x} (9 - 1) = 216 \\  \\ \implies  {3}^{x} (8) = 216 \\  \\ \implies  {3}^{x}  =  \frac{216}{8}  \\  \\ \implies  {3}^{x}  = 27 \\  \\ [27 = 3 \times 3 \times 3 =  {3}^{3} ] \\  \\ \implies  {3}^{x}  =  {3}^{3}

Comparing both sides. We get,

  •  x = 3 \\

Hence,

  • The value of 'x' is 3.

We have,

  • p(x) =  {x}^{2}  - x + 4 \\

Substituting this value of 'x' is given Polynomial,

\implies p(x) =  {x}^{2}  - x + 4 \\  \\ \implies p(3) =  {(3)}^{2}  - (3) + 4 \\  \\ \implies p(3) = 9 - 3 + 4 \\  \\ \implies p(3) = 13 - 3 \\  \\ \implies p(3) = 10 \\  \\

Therefore,

  • The value of 'x² - x + 4' is 10.

 \\  \large \underline{ \underline{ \text{Required Answer:}}} \\

  • Option (A) 10 is correct.
Similar questions