ix)prove that (a + b)2 + (aw + bw2)2 + (aw2+ bw)2=6ab
Answers
Answered by
2
Answer:
Proved
Step-by-step explanation:
a + b)² + (aω + bω²)² + (aω² + bω)² = 6ab
Step-by-step explanation:
(a+b)^2+(aw+bw^2)^2+(aw^2+bw)^2=6ab
LHS =
(a + b)² + (aω + bω²)² + (aω² + bω)²
= a² + b² + 2ab + a²ω² + b²ω⁴ + 2abω³ + a²ω⁴ + b²ω² + 2abω³
= a² + b² + 2ab + a²ω² + b²ω³.ω + 2abω³ + a²ω³.ω + b²ω² + 2abω³
ω³ = 1
= a² + b² + 2ab + a²ω² + b²ω + 2ab + a²ω + b²ω² + 2ab
= a² + a²ω² + a²ω + b² + b²ω + b²ω² + 2ab + 2ab + 2ab
= a²(1 + ω² + ω) + b²(1 + ω + ω²) + 6ab
1 + ω + ω² = 0
= 0 + 0 + 6ab
= 6ab
= RHS
QED
Proved
(a + b)² + (aω + bω²)² + (aω² + bω)² = 6ab
Answered by
0
Answer:
We know that
Hence the given expression
Similar questions