Math, asked by bamankarrahul4, 9 months ago

ix)prove that (a + b)2 + (aw + bw2)2 + (aw2+ bw)2=6ab

Answers

Answered by SreejaMahaDevi
2

Answer:

Proved

Step-by-step explanation:

a + b)² + (aω + bω²)² + (aω² + bω)² = 6ab

Step-by-step explanation:

(a+b)^2+(aw+bw^2)^2+(aw^2+bw)^2=6ab

LHS =

(a + b)² + (aω + bω²)² + (aω² + bω)²

= a² + b² + 2ab + a²ω² + b²ω⁴ + 2abω³ + a²ω⁴ + b²ω² + 2abω³

= a² + b² + 2ab + a²ω² + b²ω³.ω + 2abω³ + a²ω³.ω + b²ω² + 2abω³

ω³ = 1

= a² + b² + 2ab + a²ω² + b²ω + 2ab + a²ω + b²ω² + 2ab

= a² + a²ω² + a²ω + b² + b²ω + b²ω² + 2ab + 2ab + 2ab

= a²(1 + ω² + ω) + b²(1 + ω + ω²) + 6ab

1 + ω + ω² = 0

= 0 + 0 + 6ab

= 6ab

= RHS

QED

Proved

(a + b)² + (aω + bω²)² + (aω² + bω)² = 6ab

Answered by pulakmath007
0

Answer:

We know that

 {w}^{3}  = 1 \:  \:  \: and \:  \: 1 + w +  {w}^{2}  = 0

Hence the given expression

 =  {(a + b)}^{2}  +  {(aw + b {w}^{2} )}^{2}  +  {(a {w}^{2} +  bw)}^{2}

 =  {a}^{2}  +  {b}^{2}  +  ab+  a^{2} {w}^{2}   +  {b}^{2}  {w}^{4}  +2ab {w}^{3}   +  {a}^{2}  {w}^{4}  +  {b}^{2} {w}^{2}   + 2ab {w}^{3}

 = {a}^{2}  +  {b}^{2}  +  ab+  a^{2} {w}^{2}   +  {b}^{2}  {w}  +2ab    +  {a}^{2}  {w}  +  {b}^{2} {w}^{2}   + 2ab

 = {a}^{2} (1 + w +  {w}^{2}  )+  {b}^{2}  (1+ w +  {w}^{2}  ) + 6ab

 = 6ab

Similar questions