ix) (-V5+2V-4)+(1-V-9)+(2+3i)(2-31)
Attachments:
Answers
Answered by
10
Step-by-step explanation:
- 19+i
- Step-by-step explanation:
- (5+2\sqrt{-4}) + (1-\sqrt{-9})+(2+3i) (2-3i)(5+2−4)+(1−−9)+(2+3i)(2−3i)
- Given:
- (5+2\sqrt{-4})+ (1-\sqrt{-9}) + (2+3i) (2-3i)(5+2−4)+(1−−9)+(2+3i)(2−3i)
- =(5+2\sqrt{4i^2})+ (1-\sqrt{9i^2}) + (2+3i) (2-3i)=(5+24i2)+(1−9i2)+(2+3i)(2−3i)
- =(5+2\sqrt{(2i)^2})+ (1-\sqrt{(3i)^2}) +(2^2-(3i)^2)=(5+2(2i)2)+(1−(3i)2)+(22−(3i)2)
- =(5+2(2i))+(1-3i) +(4-9i^2)=(5+2(2i))+(1−3i)+(4−9i2)
- =(5+4i)+(1-3i) +(4-9(-1))=(5+4i)+(1−3i)+(4−9(−1))
- =6+i +(4+9)=6+i+(4+9)
- =6+i +13=6+i+13
- =19+i=19+i
Answered by
1
Step-by-step explanation:
19+i
Step-by-step explanation:
(5+2\sqrt{-4}) + (1-\sqrt{-9})+(2+3i) (2-3i)(5+2−4)+(1−−9)+(2+3i)(2−3i)
Given:
(5+2\sqrt{-4})+ (1-\sqrt{-9}) + (2+3i) (2-3i)(5+2−4)+(1−−9)+(2+3i)(2−3i)
=(5+2\sqrt{4i^2})+ (1-\sqrt{9i^2}) + (2+3i) (2-3i)=(5+24i2)+(1−9i2)+(2+3i)(2−3i)
=(5+2\sqrt{(2i)^2})+ (1-\sqrt{(3i)^2}) +(2^2-(3i)^2)=(5+2(2i)2)+(1−(3i)2)+(22−(3i)2)
=(5+2(2i))+(1-3i) +(4-9i^2)=(5+2(2i))+(1−3i)+(4−9i2)
=(5+4i)+(1-3i) +(4-9(-1))=(5+4i)+(1−3i)+(4−9(−1))
=6+i +(4+9)=6+i+(4+9)
=6+i +13=6+i+13
=19+i=19+i
Similar questions