J28² – 6f + 3√2 = 0
Answers
Answered by
1
Explanation:
Comparing 2x2 - 5x + 2 = 0 and ax2 + bx + c = 0, we get
a = 2, b = -5 and c = 2
Then,
x = [-b ± √b2 - 4ac] / 2a
x = [-(-5) ± √(-5)2 - 4(2)(2)] / 2(2)
x = [5 ± √(25 - 16)] / 4
x = [5 ± √9] / 4
x = [5 ± 3] / 4
x = (5 + 3) /4 and x = (5 - 3)/4
x = 8/4 and x = 2/4
x = 2 and x = 1/2
Therefore, the solution is {1/2, 2}.
Example 2 :
√2f2 - 6f + 3√2 = 0
Solution :
Comparing √2f2 - 6f + 3√2 = 0 and ax2 + bx + c = 0, we get
a = √2, b = -6 and c = 3√2
Then,
x = [-b ± √b2 - 4ac] / 2a
x = [-(-6) ± √(-6)2 - 4(√2)(3√2)] / 2(√2)
x = [6 ± √(36 - 24)] / 2√2
x = [6 ± √12] / 2√2
x = [6 ± 2√3] / 2√2
Similar questions
English,
2 months ago
Math,
4 months ago
Accountancy,
4 months ago
Math,
10 months ago
Social Sciences,
10 months ago