English, asked by kadambari56, 11 months ago

ज्ञात कीजिए : lim x tan1/x where x tends to zero

Answers

Answered by SUMANTHTHEGREAT
1

lim (x)(tan1/x) x tends to zero

divide and multiply with (1/x)

=lim (x)(1/x) (tan1/x)/(1/x) x tends to zero

we know that lim (tan ( 1/x))/(1/x)=1

lim (x)(1/x) (tan1/x)/(1/x)= lim (tan1/x)/(1/x)

= 1

hope this helps you

please mark the answer as brainliest please

please FOLLOW me

Answered by Anonymous
4

Answer:

\large\boxed{\sf{1}}

Explanation:

Given a limit such that,

\displaystyle\lim_{x\to0}x \tan( \dfrac{1}{x} )

To evaluate the value of the given limit.

Multiply and divide the given expression by \dfrac{1}{x}.

Therefore, we will get,

 = \displaystyle\lim_{x\to0} \dfrac{x \tan( \dfrac{1}{x} ) }{ \dfrac{1}{x} }  \times  \dfrac{1}{x}  \\  \\  = \displaystyle\lim_{x\to0} \dfrac{ \tan( \dfrac{1}{x} ) }{ \dfrac{1}{x} }  \times x \times  \dfrac{1}{x}  \\  \\ \displaystyle\lim_{x\to0} \dfrac{ \tan( \dfrac{1}{x} ) }{ \dfrac{1}{x} }  \times 1 \\  \\  = \displaystyle\lim_{x\to0} \dfrac{ \tan( \dfrac{1}{x} ) }{ \dfrac{1}{x} }

But, we know that,

  • \displaystyle\lim_{m\to0} \dfrac{ \tan(m) }{m}   = 1

Therefore, we will get,

 = 1

Hence, the required value of limit is 1.

Similar questions