Math, asked by khanhumerah, 9 months ago

Jackson forms a ten-digit number with distinct digits such that the first n number of digits form a number divisible by n, where n ranges from 1 to 10. Find the number.

Answers

Answered by amitnrw
42

Given : a ten-digit number with distinct digits such that the first n number of digits form a number divisible by n

n ranges from 1 to 10

To Find : Number

Solution:

Digits 0 to 9  

Last digit has to be 10   as number Divisible by 10

5th Digit must be 5

2nd digit  , 4th digit , 6th digit and 8th Digit must be even number

(2  , 4 , 6 , 8)

Digit position   1       2        3       4       5      6       7      8       9     10

Digit                       2468           2468   5    2468        2468          0        

Sum of 1st three Digit must be divisible by 3

Sum of 1st  6   digit must be divisible by 3   as divisble  by 6

Hence Sum of 4 to 6 Digit must be divisible by 3

while 5th Digit is 5

6 , 9 , 12  , 15 , 18  , 21  

Sum of 4th & 6th Digit

= 1   , 4  , 7  , 10  , 13  , 16  

4th digit , 6th digit  are even

Hence only possible combination is  4 + 6  = 10

Digit position   1       2        3       4       5      6       7      8       9     10

Digit                         28               46      5     46             28              0      

14 , 34 , 74 , 94  are not divisible by 4  

while 16 , 36 ,76  , 96 are divisible by 4

Hence 4th Digit must be 6 hence 6th Digit must be 4

Digit position   1       2        3       4       5      6       7      8       9     10

Digit                         28                6      5      4               28              0  

4 x (2,8)   must be Divisible by  8

Digit for x available  -  1 , 3 , 7 , 9

432   , 472 are divisible by  8    

Hence 8th Digit must be  2    & 2nd digit must be  8  

Digit position   1       2        3       4       5      6       7      8       9     10

Digit                         8                  6      5       4      37      2              0  

Sum of Digits 7 to 9 Divisible by 3

 327  ,  321  ,   723    , 729   are possible

Sum of 1st 3 Digits is divisible by 3

183  , 381  ,  189  , 981  ,  789 , 987

possible numbers :

Digit position   1       2        3       4       5      6       7      8       9     10

Digit                 1        8        3       6      5       4      7      2        9       0  

 1836547  not divisible by 7

Digit position   1       2        3       4       5      6       7      8       9     10

Digit                 3        8        1       6      5       4      7      2        9       0  

Satisfy all conditions :  

3816547290

Digit position   1       2        3       4       5      6       7      8       9     10

Digit                 1        8        9       6      5       4       7      2       3       0

Digit                 1        8        9       6      5       4       3      2       7      0

1896547 not divisible by 7

1896543 not divisible by 7

Digit position   1       2        3       4       5      6       7      8       9     10

Digit                 9        8       1       6      5       4       7      2       3       0

Digit                 9        8       1       6      5       4       3      2       7       0

9816547 not divisible by 7

9816543 not divisible by 7

Digit position   1       2        3       4       5      6       7      8       9     10

Digit                 7        8       9       6      5       4       3      2       1       0

7896543  not divisible by 7

Digit position   1       2        3       4       5      6       7      8       9     10

Digit                 9        8       7       6      5       4       3      2       1       0

9876543  not divisible by 7

3816547290   is a ten-digit number with distinct digits such that the first n number of digits form a number divisible by n, where n ranges from 1 to 10.

3 /1 = 3

38/2 = 19

381/  = 127

3816/4  = 954

38165/6 = 7633

381654/6 = 63609

3816547/7 = 5,45,221

38165472/8 =47,70,684

381654729/9 = 4,24,06,081

3816547290/10 = 381654729

3816547290

Learn More:

Find the sum of all four-digit numbers divisible by 11 formed by ...

https://brainly.in/question/14972546

if an 8 digit number 30x0867y is divisible by 88 then what is the ...

https://brainly.in/question/14023923

Answered by bsohini08
13

Answer:

3816547290

Step-by-step explanation:

It has to be a number of 10 digits and divisible by the digits, ranging from 1 to 10.

Similar questions