Jagne wale mere sare bhaii or unki Pyare behne krioya krke..kuch Madad ada krde..
My questions are following.
s30=3(s20- s10) ——prove This if..an denotes the first n terms of an AP ..
Only answers by serious users..maths Arya Bhatt’s..and brainliest users like me xD.
No thanks in advance..
Answers
Answered by
1
sn=n/2(2a+(n-1)d
s30=15(2a+29d)
Now,
s20-s10=10(2a+19d)-5(2a+9d)
Multiplying it with 3
3[20a+190d)-10a+45d]
3[10a+235d]
30a+192d
=s30
Hence proved
s30=15(2a+29d)
Now,
s20-s10=10(2a+19d)-5(2a+9d)
Multiplying it with 3
3[20a+190d)-10a+45d]
3[10a+235d]
30a+192d
=s30
Hence proved
Anonymous:
Thanks!!
Answered by
1
Hii
Here is your answer -
Let a be the first term and d be the common difference of the given A.P.
Sum of the first n terms of an A.P,
Sn = n/2 [2a + ( n - 1)d]
Then, S(30) = 30/2[2a + (30 - 1)d] ... (i) L.H.S
⇒ S[(20) - S(10)] = 20/2[2a + (20 - 1)d] - 10/2[2a + (10 - 1)d]
⇒ S[(20) - S(10)] = 10[2a + (20 - 1)d] - 5[2a + (10 - 1)d]
⇒ S[(20) - S(10)] = 10a + 190d - 45d .
⇒ S[(20) - S(10)] = 3(10a + 145d)
⇒ S[(20) - S(10)] = 3 × 5(2a + 29d )
⇒ S[(20) - S(10)] = 30/2[2a + (30 - 1)d] ... (ii) R.H.S
From (i) and (ii), we get
S(30) = 3[S(20) - S(10)]
Hence Proved.
Similar questions