Math, asked by ayushdeep4231, 10 months ago

Janta let's find the value of x​

Attachments:

Answers

Answered by shadowsabers03
12

From the fig. on considering \sf{\triangle ABH,} we get,

\displaystyle\longrightarrow\sf{BH=\sqrt{AB^2-AH^2}}

\displaystyle\longrightarrow\sf{BH=\sqrt{a^2-b^2}}

And,

\displaystyle\longrightarrow\sf{\cos72^o=\dfrac{b}{a}}

\displaystyle\longrightarrow\sf{\dfrac{\sqrt5-1}{4}=\dfrac{b}{a}}

\displaystyle\longrightarrow\sf{b=\dfrac{(\sqrt5-1)a}{4}\quad\quad\dots(1)}

\displaystyle\longrightarrow\sf{b^2=\dfrac{(6-2\sqrt5)a^2}{16}\quad\quad\dots(2)}

Then on considering \sf{\triangle BCH,} we get,

\displaystyle\longrightarrow\sf{\sin x=\dfrac{\sqrt{a^2-b^2}}{a+b}}

From (1) and (2),

\displaystyle\longrightarrow\sf{\sin x=\dfrac{\sqrt{a^2-\dfrac{(6-2\sqrt5)a^2}{16}}}{a+\dfrac{(\sqrt5-1)a}{4}}}

\displaystyle\longrightarrow\sf{\sin x=\dfrac{\sqrt{\dfrac{16a^2-(6-2\sqrt5)a^2}{16}}}{\dfrac{4a+(\sqrt5-1)a}{4}}}

\displaystyle\longrightarrow\sf{\sin x=\dfrac{\dfrac{a}{4}\sqrt{16-6+2\sqrt5}}{\dfrac{a}{4}\left(4+\sqrt5-1\right)}}

\displaystyle\longrightarrow\sf{\sin x=\dfrac{\sqrt{10+2\sqrt5}}{3+\sqrt5}}

\displaystyle\Longrightarrow\sf{\underline{\underline{x\approx46.6^o}}}

Similar questions