Chemistry, asked by Anonymous, 11 months ago

JEE ADVANCE :-

Find the value of

 \int \:  \frac{ {x}^{4} + 1 }{ {( {x}^{4}  + 2)}^{ \frac{3}{4} } } \:  dx

Answers

Answered by Draxillus
3

To integrate :-

</p><p></p><p>\int \: \frac{ {x}^{4} + 1 }{ {( {x}^{4} + 2)}^{ \frac{3}{4} } } \: dx </p><p>.</p><p>

Concept

This type of integration is frequently asked in JEE Advance. It uses critical analytical skills.

The main concepts are :-

  • Multiply numerator by denominator by such a factor that the numerator becomes the differentiation of the numerator.

Solution

</p><p></p><p>\int \: \frac{ {x}^{4} + 1 }{ {( {x}^{4} + 2)}^{ \frac{3}{4} } } \: dx  \\  \\ multiplying \:  \: num \: and \: denominator \: by \:  {x}^{3}  \\ \\    =  &gt;  \int \:  \frac{ {x}^{7} +  {x}^{3}  }{ {( {x}^{8}  + 2 {x}^{4} )}^{ \frac{3}{4} } } dx \\  \\  \\putting \:  {x}^{8}  + 2 {x}^{4} = t\:  \\ \\ we \: get \: (8 {x}^{7} + 8 {x}^{3} ) \: dx=d t  \\  \\ ({x}^{7} +  {x}^{3} ) \: dx= \frac{dt}{8}    \:   \\  \\ =  &gt;  \int \frac{dt}{8 {t}^{ \frac{3}{4} } }  \\  \\  \\  =  &gt;   \frac{4 {t}^{ \frac{1}{4} } }{8}  \\  \\    =  &gt;  \frac{ {t}^{ \frac{1}{4} } }{2}  \\  \\   =  &gt;  \frac{ { ({x}^{8} + 2 {x}^{4} ) }^{ \frac{1}{4} } }{2} </p><p></p><p>

Hence, the value is

 \boxed{ \:  \pink{\frac{ { ({x}^{8} + 2 {x}^{4} ) }^{ \frac{1}{4} } }{2} } \: }</p><p>

Similar questions