Math, asked by nikhilnegi1230, 9 months ago

Jee advanced 2014 maths ques....
help...
multiple correct​

Attachments:

Answers

Answered by senboni123456
0

Step-by-step explanation: Answer (2) &(3):

Given function is f(x)=(log(sec(x)+tan(x)))³

Now,

We know, if f(-x)= -f(x) then the function is odd functuin & if f(-x)= f(x) then the function is even

so,

f( - x) =  (log( \sec( - x)  +  \tan(  - x) ) )^{3}  =  > f( - x) =( log( -  \sec(x) -  \tan(x)  ) ^{3}

 =  > f( - x) = ( log - ( \sec(x) +  \tan(x)  ) )^{3}

So this implies that f(x) is neither even nor odd.

We know that, a function is called onto if its range= co-domain

Now, range of f(x) will be

  - \frac{ \pi}{2}  \leqslant x \leqslant  \frac{\pi}{2}

 -  \frac{\pi}{4}  \leqslant  \frac{x}{2}  \leqslant  \frac{\pi}{4}

  - \frac{ \pi}{4}  +  \frac{\pi}{4}  \leqslant  \frac{x}{2} +  \frac{\pi}{4}   \leqslant  \frac{\pi}{4}  +  \frac{\pi}{4}

0 \leqslant  \frac{x}{2} +  \frac{\pi}{4}   \leqslant  \frac{\pi}{2}

Taking tan in both sides,

 \tan(0)  \leqslant  \tan( \frac{\pi}{4} +  \frac{x}{2}  ) \leqslant  \tan( \frac{\pi}{2} )

0 \leqslant  \tan( \frac{\pi}{4}  +  \frac{x}{2} ) \leqslant  \infty

Taking log both sides,

 log(0)  \leqslant   log( \tan( \frac{\pi}{4}  +  \frac{x}{2} ) ) \leqslant  log( \infty )

We know that, log(0)= -infinity and log(infinity)=infinity

So,

  - \infty \leqslant  log( \tan( \frac{\pi}{4} +  \frac{x}{2}  ) )  \leqslant  \infty

(  -  \infty )^{3} \leqslant ( log( \tan( \frac{\pi}{4}  +  \frac{x}{2} )) )^{3}  \leqslant  { \infty }^{3}

We know that, tan(π/4+x/2)=sec(x)+ tan(x)

So,

 -  \infty  \leqslant ( log( \sec(x)  +  \tan(x) ))^{3} \leqslant  \infty

So f(x) is onto function

Also,

derivative of f(x) is always positive, i.e, f(x) is strictly increasing function.

Hence both option are correct

Similar questions