Math, asked by StrongGirl, 8 months ago

JEE ADVANCED MATHS QUESTION SEPTEMBER 2020

Attachments:

Answers

Answered by amansharma264
0

ANSWER.

=> number of all possible values of c for which

the equality holds for a some positive integer

n = 1.

EXPLANATION.

 \sf :  \implies \:  a_{1} , a_{2} , a_{3} ....... \: be \: a \: sequence \: of \: positive \: integer \: in \: ap \\  \\  \sf :  \implies \: common \: difference \:  = 2 \\  \\  \sf :  \implies \:  b_{1}  ,  b_{2}  ,  b_{3}...... \: be \: a \: sequence \: of \: positive \: integer \: in \: gp \\  \\ \sf :  \implies \: common \: ratio \:  = 2 \\  \\ \sf :  \implies \:  a_{1} =  b_{1} = c \:  \:  \:  \: (given)

\sf :  \implies \: equation \:  = 2( a_{1} ,  a_{2} ,  a_{3}..... a_{n}) =  b_{1} ,  b_{2} ,  b_{3}...... b_{n} \\  \\  \sf :  \implies \: sum \: of \: n \: terms \: of \: an \: ap \\  \\ \sf :  \implies \:  s_{n} =  \frac{n}{2}(2a \:  + (n - 1)d) \\  \\  \sf :  \implies \: sum \: of \: n \: terms \: of \: gp \\  \\ \sf :  \implies \:  s_{n} =  \frac{a( {r}^{n}  - 1)}{r - 1}

\sf :  \implies \: 2 \times  \dfrac{n}{2} (2c + (n - 1)2) =  \dfrac{c( {2}^{n}  - 1)}{2 - 1}  \\  \\ \sf :  \implies \: n(2c + (n - 1)2) =  c( {2}^{n}  - 1) \\  \\  \sf :  \implies \: 2nc \:  + n(n - 1)2 = c( {2}^{n}  - 1) \\  \\ \sf :  \implies \: c \:  =  \frac{2n(n - 1)}{ {2}^{n}  - 2n - 1} \\  \\  \sf :  \implies \:  \: c > 1

\sf :  \implies \:  \dfrac{2n(n - 1)}{ {2}^{n}  - 2n - 1}   \geqslant  1 \\  \\ \sf :  \implies \: 2(n)(n - 1)  \geqslant  \:  {2}^{n}  - 2n - 1 \\  \\ \sf :  \implies \: 2n {}^{2} - 2n \geqslant  \:  {2}^{n}  - 2n - 1  \\  \\ \sf :  \implies \:  {2n}^{2}  \geqslant  \:  {2}^{n}  - 1 \\  \\ \sf :  \implies \: n \leqslant 6 \\  \\ \sf :  \implies \: n \:  = 1 \:  \:only \: one \:  \:  values \:

Similar questions