Math, asked by StrongGirl, 8 months ago

JEE ADVANCED MATHS QUESTION SEPTEMBER 2020

Attachments:

Answers

Answered by TheLifeRacer
2

Answer:

1

Step-by-step explanation:

Solution is refer to attachment .

_____________________________

Attachments:
Answered by amansharma264
4

ANSWER.

The value of the real number a for which the

right hand limit is equal to nonzero = 1.

EXPLANATION.

 \sf : \implies \:   \lim_{x \to \:  {0}^{ + } } \:  \:  \dfrac{(1 - x) {}^{ \dfrac{1}{x} }  - e {}^{ - 1} }{ {x}^{a} }

 \sf : \implies \:   \lim_{x \to \:  {0}^{ + } } \:  \dfrac{ {e}^{ \dfrac{1}{x} ln(1 - x)} -  {e}^{ - 1}  }{ {x}^{a} } \\  \\   \sf : \implies \:   \lim_{x \to \:  {0}^{ + } } \:  \frac{e {}^{ \dfrac{1}{x}( - x -  \dfrac{x {}^{2} }{2}   -  \dfrac{ {x}^{3} }{3} .....}  -  {e}^{ - 1} }{ {x}^{ a } } \\  \\   \sf : \implies \:   \lim_{x \to \:  {0}^{ + } } \:  \frac{e {}^{( - 1 -  \dfrac{x}{2} -  \dfrac{ {x}^{2} }{3}  .....}  -  {e}^{ - 1} }{ {x}^{a} }

 \sf : \implies \:   \lim_{x \to \:  {0}^{ + } } \:  \dfrac{(e {}^{ - 1})(e {}^{  \dfrac{ - x}{2}  -  \dfrac{ {x}^{2} }{3}.... }   - 1)}{( \dfrac{ -  {x}^{} }{2}  -  \dfrac{ {x}^{2} }{3} .....)} \times  \:  \:  \dfrac{\dfrac{ -  {x}^{} }{2}  -  \dfrac{ {x}^{2} }{3} .....}{ {x}^{a} }  \\  \\  \\  \sf : \implies \:   \lim_{x \to \:  {0}^{ + } }  \:  \:  \frac{1}{e} ( \frac{ - 1}{2}x {}^{(1 - a) }  -  \frac{ 1}{3}x {}^{(2 - a)} .....) \\  \\  \sf : \implies \:   \lim_{x \to \:  {0}^{ + } }  \:  \: 1 - a \:  = 0 \\  \\ \sf : \implies \: a \:  = 1

Similar questions