JEE ADVANCED MATHS QUESTION SEPTEMBER 2020
Answers
AnswEr:-
Hence,
Therefore,
Answer :- 19.
____________________________________
Let the function f : [0, 1] → R be defined by
f(x) =
Then the value of
f(1/40) + f(2/40) + f(3/40) + .... f(39/40) - f(1/2) is ...
solution : f(x) = 4^x/(4^x + 2)
f(1 - x) = 4^(1 - x)/{4^(1 - x) + 2}
= 4^1 × 4^-x/{4^1 × 4^-x + 2}
= 4/{4^x ×( 4^1 × 1/4^x + 2)}
= 4/{4 + 2 4^x}
now f(x) + f(1 - x) = 4^x/(4^x + 2) + 4/(4 + 2 4^x)
= (4 4^x + 2 4^2x + 4 4^x + 4 2)/(4^x + 2)(4 + 2 4^x)
= {2(4^2x + 4 4^x + 4)}/{2(4^2x + 4 4^x + 4)}
= 1
so we get, f(x) + f(1 - x) = 1
putting x = 1/40
f(1/40) + f(39/40) = 1
putting, x = 2/40
f(2/40) + f(38/40) = 1
........
.............
putting x = 19/40
f(19/40) + f(21/40) = 1
putting x = 20/40 = 1/2
f(1/2) + f(1/2) = 1
⇒2f(1/2) = 1
⇒f(1/2) = 1/2
now f(1/40) + f(2/40) + f(3/40) + .... + f(39/40) - f(1/2)
= 19 + f(1/2) - f(1/2)
= 19 + 1/2 - 1/2
= 19
Therefore the value of f(1/40) + f(2/40) + f(3/40) + .... + f(39/40) - f(1/2) is 19.