Physics, asked by StrongGirl, 8 months ago

JEE ADVANCED PHYSICS QUESTION SEPTEMBER 2020

Attachments:

Answers

Answered by TheLifeRacer
4

Answer:

1.77

Explanation:

We know that ,in isothermal process

w1\:  = nrt ln( \frac{v2}{v1} )

Already given that , initial pressure p1 and V1 ,after expantion volume becomes 4v1

Since,

w 1\:  = nrt \: ln( \frac{4v1}{v1} ) = 2nrt \: log2

 \blue{in \adiabatic \: process}

After isothermal process goes into adiabatic .

then changes happened with volume volume becomes 4v1 to 32v2

we know a relation in adiabatic process .

i.e

T1(v1) {}^{ \gamma - 1}  = T2(v2) {}^{ \gamma - 1}

From this relation.

= > t1(4v1)  {}^{ \gamma - 1}  = t2(32v1) {}^{ \gamma - 1}

 =  > t2 =t 1(4v1) {}^{ 1 -  \gamma}

In mono atomic gas ,

 \gamma  =  \frac{5}{3}

t2 = t1(8v1) ] {}^{ 1 -  \frac{5}{3} }

t2 = t1(8v1)  {}^{ \frac{2}{3} }  =  \frac{t1}{4}

W2 = - ncvmR(∆T) = ncvmR (t2-t1)

In monoatimic cvm = 3/2

=> W2 = 9/8 n rt

Wiso/Wadia = ?

 \frac{w1}{w2}  =  \frac{2nrt \: ln2}{ \frac{9}{8}nrt }  =  \frac{16}{9} ln2

Since, 16/9 = 1.77 Answer

Answered by amansharma264
10

ANSWER.

The value of f = 1.78

EXPLANATION.

\sf :  \implies \:  p_{1} v_{1} \: \longrightarrow \:  p_{1} 4v_{1} \\  \\  \sf :  \implies \:  w_{isothermally} \:  = NRT \:  ln( \frac{ v_{2} }{ v_{1} } )  \\  \\ \sf :  \implies \: w_{isothermally}  \:  = NRT \:  ln( \frac{4 v_{1}}{ v_{1} } )  \:  \:  \: .....(1)

 \sf : \implies \:  4 v_{1} \:  \longrightarrow \: 32 v_{1} \\  \\ \sf : \implies \: as \: we \: know \: that \\  \\ \sf : \implies \:  t_{1} v_{1} {}^{ \gamma  - 1}  =   t _{2} v_{2} {}^{ \gamma  - 1} \\  \\\sf : \implies \: t(4v) {}^{ \gamma  - 1}   =  t_{2}(32v) {}^{ \gamma  - 1}  \\  \\ \sf : \implies \:  t_{2} \:  = t \: 8 {}^{( \dfrac{ - 2}{3}) }

\sf : \implies \:  w_{adiabatically} \:  =  \dfrac{nr \Delta \: t}{1 -  \gamma }  =  \dfrac{nr( t_{2} - t) }{1 -  \frac{5}{3} }   \\  \\ \sf : \implies \: helium \: is \:  a \: monoatomic \: gas \:  =  \gamma  \:  =  \frac{5}{3} \\  \\  \sf : \implies \: w_{adiabatically} \:  =  \frac{nr \: (8 {}^{ \dfrac{ - 2}{3} } - 1) t}{ \dfrac{ - 2}{3} } \\  \\   \sf :  \implies \: w_{adiabatically} \:  =  \frac{9}{8}nrt \:  \:  \: .....(2)

 \sf :  \implies \: from \: equation \: (1) \:  \: and \:  \: (2) \:  \: we \: get \:  \\  \\  \sf :  \implies  \:  \frac{ w_{iso} }{ w_{adia}} =  \frac{2 ln(2) }{ \frac{9}{8} }  =  \frac{16}{9}  ln(2)  = 1.78

Similar questions