Physics, asked by StrongGirl, 9 months ago

JEE ADVANCED PHYSICS QUESTION SEPTEMBER 2020

Attachments:

Answers

Answered by TheLifeRacer
8

Answer:

6.2

Explanation:

*Given :-

 \sigma(r) =  \sigma \circ(1 -  \frac{r}{R} )

*We have to find ratio of Electric flux

 \frac{ \phi \circ}{  \phi}  from spherical surface of radius R and radius R/4

Consider a ring element of radius ,thickness in disc charge of elemet=dQ = (2 \pi \: rdr) \sigma \: .

dQ = 2 \pi \:r \: dr \sigma \circ(1 -  \frac{1}{r} )

Charge of disc upto r =  \int \: charge \: of \: elementring

Q =  \int \: 2 \pi \: r \sigma \circ(1 -  \frac{r}{R} )dr

Q= 2 \pi \sigma \circ( \frac{r {}^{2} }{2}  -  \frac{r {}^{3} }{3R} )

 \phi \circ \:  =  \frac{charge \: upto \: r}{ \epsilon \circ} _____(1)

Put the value of Q ,which have been already get .

 \phi \:  =  \frac{charge \: upto \:  \frac{r}{4} }{ \epsilon \circ}  = 2  \pi r \sigma \circ( \frac{r {}^{2} }{16 \times 2}  -  \frac{r {}^{3} }{\ 64 \times 3R} ) /ۥ____(2)

Dividing (1) and (2) equation

Since,

  \pink{\frac{ \phi \circ}{ \phi}  = 6.2}

Answered by shadowsabers03
8

Consider an elemental ring of radius \sf{r} and width \sf{dr} from the circular disc.

\setlength{\unitlength}{1mm}\begin{picture}(5,5)\thicklines\qbezier(-19,0)(-18,18)(0,19)\qbezier(0,19)(18,18)(19,0)\qbezier(19,0)(18,-18)(0,-19)\qbezier(0,-19)(-18,-18)(-19,0)\qbezier(-9,0)(-8,8)(0,9)\qbezier(0,9)(8,8)(9,0)\qbezier(9,0)(8,-8)(0,-9)\qbezier(0,-9)(-8,-8)(-9,0)\qbezier(-10,0)(-9,9)(0,10)\qbezier(0,10)(9,9)(10,0)\qbezier(10,0)(9,-9)(0,-10)\qbezier(0,-10)(-9,-9)(-10,0)\put(0,0){\vector(1,0){9}}\put(0,0){\vector(0,1){19}}\put(0,-6){\vector(0,-1){3}}\put(0,-13){\vector(0,1){3}}\put(3.7,1.5){\sf{r}}\put(1.4,13){\sf{R}}\put(1.4,-14){\sf{dr}}\end{picture}

Area of this elemental ring,

\sf{\longrightarrow dA=\pi[(r+dr)^2-r^2]}

\sf{\longrightarrow dA=2\pi r\,dr\quad[(dr)^2\approx0]}

Charge on this elemental ring,

\sf{\longrightarrow dq=\sigma(r)\cdot dA}

\sf{\longrightarrow dq=\sigma_0\left(1-\dfrac{r}{R}\right)\cdot2\pi r\,dr}

\sf{\longrightarrow dq=2\pi\sigma_0r\left(1-\dfrac{r}{R}\right)\,dr}

So, total charge on a circular disc of radius \sf{r} will be given by,

\displaystyle\sf{\longrightarrow q=2\pi\sigma_0\int\limits_0^rr\left(1-\dfrac{r}{R}\right)\,dr}

\displaystyle\sf{\longrightarrow q=2\pi\sigma_0\int\limits_0^r\left(r-\dfrac{r^2}{R}\right)\,dr}

\displaystyle\sf{\longrightarrow q=2\pi\sigma_0\left(\dfrac{r^2}{2}-\dfrac{r^3}{3R}\right)}

Then, electric flux through this disc,

\sf{\longrightarrow \Phi_E=\dfrac{q}{\epsilon_0}}

\displaystyle\sf{\longrightarrow \Phi_E=\dfrac{2\pi\sigma_0}{\epsilon_0}\left(\dfrac{r^2}{2}-\dfrac{r^3}{3R}\right)}

This implies,

\displaystyle\sf{\longrightarrow \Phi_E\propto\dfrac{r^2}{2}-\dfrac{r^3}{3R}}

\displaystyle\sf{\longrightarrow \Phi_E\propto r^2\left(\dfrac{1}{2}-\dfrac{r}{3R}\right)}

Therefore,

\displaystyle\sf{\longrightarrow\dfrac{\Phi_{E_1}}{\Phi_{E_2}}=\dfrac{r_1\left(\dfrac{1}{2}-\dfrac{r_1}{3R}\right)}{r_2\left(\dfrac{1}{2}-\dfrac{r_2}{3R}\right)}}

\displaystyle\sf{\longrightarrow\dfrac{\Phi_{E_1}}{\Phi_{E_2}}=\dfrac{r_1(3R-2r_1)}{r_2(3R-2r_2)}}

In the question,

  • \sf{\Phi_{E_1}=\Phi_0}
  • \sf{\Phi_{E_2}=\Phi}
  • \sf{r_1=R}
  • \sf{r_2=\dfrac{R}{4}}

Then,

\displaystyle\sf{\longrightarrow\dfrac{\Phi_0}{\Phi}=\dfrac{R(3R-2R)}{\dfrac{R}{4}\left(3R-\dfrac{2R}{4}\right)}}

\displaystyle\sf{\longrightarrow\underline{\underline{\dfrac{\Phi_0}{\Phi}=1.6}}}

Similar questions