Math, asked by MiniDoraemon, 4 months ago

Jee level question
Chapter:- Coordinate geometry ​

Attachments:

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Given that,

\rm :\longmapsto\: \alpha, \beta  \: lies \: on \: the \: parabola \:  {y}^{2} = x

\rm :\implies\: { \beta }^{2} =  \alpha  -  -  -  - (1)

Now, we know that Equation of tangent to parabola y² = 4ax at a point ( p, q ) is given by yq = 2a( x + p ).

So,

\rm :\longmapsto\:Equation \: of \: tangent \: to \:  {y}^{2} = x \: at \: ( \alpha , \beta ) \: is \:

\rm :\longmapsto\:y \beta  = \dfrac{x +  \alpha }{2}

\rm :\longmapsto\:y \beta  = \dfrac{x +   { \beta }^{2}  }{2}

\red{\bigg \{ \because \: \alpha  =  { \beta }^{2}  \bigg \}}

Now, above equation can be rewritten as

\rm :\longmapsto\:y   = \dfrac{x +   { \beta }^{2}  }{2 \beta }

\bf\implies \:y = \dfrac{1}{2 \beta }x + \dfrac{ \beta }{2}    -  -  - (2)

Now,

Given that

\rm :\longmapsto\:y = \dfrac{1}{2 \beta }x + \dfrac{ \beta }{2} \: is \: tangent \: to \:  {x}^{2} +  {2y}^{2} = 1

can be rewritten as

\rm :\longmapsto\:y = \dfrac{1}{2 \beta }x + \dfrac{ \beta }{2} \: is \: tangent \: to \:  {x}^{2} + \dfrac{ {y}^{2} }{ \:  \: \dfrac{1}{2}  \:  \:  \: }  = 1

We know,

 \red{\rm :\longmapsto\:y = mx + x \: is \: tangent \: to \: ellipse \: \dfrac{ {x}^{2} }{ {a}^{2} }  + \dfrac{ {y}^{2} }{ {b}^{2} }  = 1 \: then} \\  \blue{\rm :\longmapsto\:c \:  =  \:  \pm \:  \sqrt{ {a}^{2} \:  {m}^{2}  \:  +  \:  {b}^{2}  }  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   }

So, here

\rm :\longmapsto\:m = \dfrac{1}{2 \beta }

\rm :\longmapsto\:c = \dfrac{ \beta }{2}

\rm :\longmapsto\: {a}^{2}  = 1

\rm :\longmapsto\: {b}^{2}  = \dfrac{1}{2}

So, on substituting the values, we get

\rm :\longmapsto\:\dfrac{ \beta }{2} =  \pm \:  \sqrt{1 \times \dfrac{ { 4 }}{ { \beta }^{2} }  + \dfrac{1}{2} }

\rm :\longmapsto\:\dfrac{ \beta }{2} =  \pm \:  \sqrt{ \dfrac{ { 4 }}{ { \beta }^{2} }  + \dfrac{1}{2} }

On squaring both sides, we get

\rm :\longmapsto\:\dfrac{ { \beta }^{2} }{4} =   \dfrac{ { 4 }}{ { \beta }^{2} }  + \dfrac{1}{2}

\rm :\longmapsto\:\dfrac{ { \beta }^{2} }{4} - \dfrac{ { 4 }}{ { \beta }^{2} } -  \dfrac{1}{2} = 0

\rm :\longmapsto\: { \beta }^{4} -  {2 \beta }^{2}  - 1 = 0

\rm :\longmapsto\: { \beta }^{4} -  {2 \beta }^{2} = 1

\rm :\longmapsto\: { \beta }^{4} -  {2 \beta }^{2} + 1 = 1 + 1

\rm :\longmapsto\: {( { \beta }^{2}  - 1)}^{2}  = 2

\rm :\longmapsto\: {{ \beta }^{2}  - 1}=  \sqrt{2}  \:  \:  \:  \: as \:  \beta  > 0

\rm :\implies\: { \beta }^{2}  =  \sqrt{2}  + 1

\bf :\implies\:  \alpha   =  \sqrt{2}  + 1 \:  \:  \:  \:  \:  \:  \: as \:  { \beta }^{2}  =  \alpha

Hence,

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \boxed{ \bf{ \: Option \: (a) \: is \: correct \:  \: }}

Attachments:
Similar questions