Jee level question
Chapter:- Coordinate geometry
Attachments:
Answers
Answered by
14
EXPLANATION.
The line : ax + y = c touches both the curves x² + y² = 1,
and y² = 4√2x.
As we know that,
If y² = 4ax is parabola then,
⇒ y = mx + a/m.
⇒ ax + y = c.
⇒ y = - ax + c.
Slope of the line = m = - a.
⇒ y² = 4√2x. - - - - - (1).
⇒ y² = 4ax. - - - - - (2).
Compare equation (1) & (2), we get.
⇒ a = √2.
Put the value in the equation, we get.
⇒ y = mx + a/m.
⇒ y = - ax + (√2)/(-a).
⇒ y = - ax - √2/a.
⇒ c = - √2/a
As we know that,
ax + by + c = 0 touches the circle x² + y² = r²,
⇒ if |c|/√a² + b² = r.
Using this formula in the equation, we get.
⇒ |-√2/a|/(√1 + a²) = 1.
⇒ |-√2/a| = √1 + a².
⇒ 2/a² = 1 + a².
⇒ a⁴ + a² - 2 = 0.
⇒ (a² + 2)(a² - 1) = 0.
⇒ a² = 1 [a² > 0, ∨ a ∈ R].
⇒ |c| = √2/|a|.
⇒ |c| = √2/|1| = √2.
Option [C] is correct answer.
Answered by
1
Answer:
option C
hope you helpful answer
Similar questions