Physics, asked by Anonymous, 1 year ago

JEE Mains - 2019

Question # 2: Refer to the attachment ^^

Kindly answer with a full explanation.​

Attachments:

Answers

Answered by Anonymous
24

Answer :-

 \mathsf{M^{-1}L^{-2}T^3A^2}

Option → D

Given :-

 \mathsf{\sqrt{\dfrac{\varepsilon_0}{\mu_0}}}

To find :-

It's dimensions.

Solution:-

  • From coulumb's law.

 \mathsf{F = K \dfrac{q_1.q_2}{r^2}}

  • The dimension of charge is \mathsf{ Q = AT }

 \mathsf{K = \dfrac{F \times r^2}{q_1.q_2}}

 \mathsf{K = \dfrac{F \times r^2}{q^2 }}

 \mathsf{K = \dfrac{MLT^{-2}\times L^2}{(AT)^2}}

\mathsf{ K = \dfrac{ML^3T^{-2}}{A^2T^2}}

\mathsf{ K = ML^3 T^{-4} A^{-2}}

 \mathsf{K = \dfrac{1}{4 \pi  \varepsilon_0}}

  • Numbers are dimensionless.

 \mathsf{\varepsilon_0 = \dfrac{1}{K}}

\mathsf{ \varepsilon_0 = \dfrac{1}{ML^3T^{-4}A^{-2}}}

 \mathsf{\varepsilon_0 = M^{-1}L^{-3}T^{4}A^{2}}

  • From magnetic permiability formula.

 \mathsf{C^2 = \dfrac{1}{\mu_0 \varepsilon_0}}

  • C is the speed of light.

  • \mathsf{ \epsilon_0} is the permiability of free space.

 \mathsf{\mu_0 = \dfrac{1}{\varepsilon_0 C^2 }}

 \mathsf{\mu_0 = \dfrac{1}{M^{-1}L^{-3}T^{4}A^{2} \times L^2 T^{-2}}}

\mathsf{ \mu_0 = \dfrac{1}{M^{-1} L^{-1}T^2A^2}}

\mathsf{ \mu_0 = M^1L^{1}T^{-2}A^{-2}}

 \mathsf{\sqrt{\dfrac{\varepsilon_0}{\mu_0}}}

  • use the above dimensional formula.

 \mathsf{\sqrt{\dfrac{M^{-1}L^{-3}T^{4}A^{2}}{M^{1}L^{1}T^{-2}A^{-2}}}}

 \mathsf{\sqrt{M^{-1-1}L^{-3-1}T^{4+2}A^{2+2}}}

 \mathsf{\sqrt{M^{-2}L^{-4}T^{6}A^{4}}}

 \mathsf{M^{-1}L^{-2}T^3A^2}

hence,

Required Dimension formula is  \mathsf{M^{-1}L^{-2}T^3A^2 }


Anonymous: Awesome answer : )
Similar questions