Chemistry, asked by StrongGirl, 9 months ago

JEE MAINS CHEMISTRY QUESTION SEPTEMBER 2020

Attachments:

Answers

Answered by amansharma264
10

ANSWER.

=> ratio of ( Ro) 1 and ( Ro) 2 = 3:2

=> option [ 3 ] is correct.

EXPLANATION.

 \sf \to \: difference \: in \:  \: radius \:  \: of \:  \: 3rd \: and \: 4th \: orbit \\  \\  \sf \to \: formula \: of \: radius \:  = 0.529 \times  \dfrac{ {n}^{2} }{z}  \\  \\  \sf \to \: difference \: of \: 3rd \: and \: 4th \: orbital \: of \: he {}^{ + }  \\  \\  \sf \to \: 0.529 \times  \frac{( {4}^{2}  -  {3}^{2} )}{2} ......(1)

 \sf \to \: difference \: of \: 3rd \: and \: 4th \: orbital \: of \: li {}^{ + }  \\  \\  \sf \to \: 0.529 \times  \frac{( {4}^{2}  -  {3}^{2}) }{3} ......(2)

 \sf \to \: according \: to \: the \: question \\  \\  \sf \to \: ratio \: of \:  r_{o}(1) \:  \: and \:  \:  r_{o}(2)  \\  \\  \sf \to \:  \dfrac{ \dfrac{0.529 \times ( {4}^{2} -  {3}^{2}  )}{2} }{ \dfrac{0.529 \times ( {4}^{2}  -  {3}^{2} }{3} }  \\  \\   \\ \sf \to \:  \frac{ \cancel{0.529  \times ( {4}^{2}  -  {3}^{2}) }}{2}  \times  \frac{3}{ \cancel{0.529 \times ( {4}^{2}  -  {3}^{2} )}} \\  \\  \sf \to \:   \frac{ r_{o}(1) }{ r_{o}(2) }    =  \frac{3}{2}

Answered by AngelicSparkles
10

{ \huge \color{red} { \underline{ \rm \color{black}{To \: find }}}}

The ratio of radius of 3rd and 4th orbital of H \sf  {e}^{ + } ions and L.ions.

{ \huge{ \underline{ \underline{ \rm{Given}}}}}

Difference in the radius of 3rd and 4th orbital is  \sf(R_O)1 and (R_O)2

 \huge \color{blue} \underline \color{black} \rm{Solution}

 \sf \: Formula \:  of \:  radius=0.529 \times  \frac{ {n}^{2} }{z}

Difference in 3rd and 4th orbital of h \sf {e}^{ + }

 \sf \rightarrow0.529 \times  \frac{ {4}^{2}  -  {3}^{2} }{2} ....(i)

Difference in 3rd and 4th orbital of l \sf {i}^{2 + }

 \rightarrow \sf0.529 \times  \frac{ {4}^{2} -  {3}^{2}  }{3} ..(ii)

According to the question; the ratio of  \sf \: R_O(1) \:  and \:  R_O(2)

 \large \rightarrow \sf  \frac{ \frac{0.529 \times ( {4}^{2} -  {3}^{2}  )}{2} }{ \frac{0.529 \times ( {4}^{2}  -  {3}^{2} )}{3} }

\sf \implies \frac{ \cancel{0.529 }\times (  \cancel{{4}^{2}} -   \cancel{{3}^{2}} ) }{2}  \frac{3}{ \cancel{0.529} \times( \cancel{  {4}^{2}} -  \cancel{ {3}^{2}}  )}

 \sf \:  \frac{R_O(1)}{R_O(2)}  =  \frac{3}{2}

So the correct answer is option (c)

Similar questions