Math, asked by StrongGirl, 7 months ago

JEE MAINS MATHS QUESTION 2020

Attachments:

Answers

Answered by amansharma264
4

ANSWER.

 \sf \to \:  \sum  \limits_{r \:  = 0} {}^{20} \:  \:  \:   {}^{50 - r} c_{6}  =     {}^{51} c_{7}  -  {}^{30} c_{7}

 \sf \to \: put \: the \: value \: of \: r \:  = 20 \:  \: to \:  \: r = 0 \:  \:  \: in \: decreasing \: form \\  \\  \sf \to \:  {}^{30}c_{6} +  {}^{31} c_{6}   +  {}^{32}c_{6} + ........ +  {}^{50} c_{6} \\  \\  \sf \to \:  {}^{n} c_{r} +  {}^{n}c_{r + 1} =  {}^{n + 1}c_{r + 1} \\  \\  \sf \to \:  {}^{n + 1}c_{r + 1} =  {}^{31}c_{7}

 \sf \to \:  {}^{30}c_{6} +  {}^{31} c_{6} +  {}^{32}c_{6} +.... +  {}^{50} c_{6} -  {}^{30}c_{7} -  {}^{31}c_{7} - ..... -  {}^{50}c_{7} \\  \\  \sf \to \:   {}^{n}c_{r + 1} =  {}^{50}c_{7}  \\  \\  \sf \to \:  {}^{50}c_{7} -  {}^{30} c_{7} \\  \\  \sf \to \:  \therefore \: last \: term \: is \: also \: increased \: by \:( n  + 1 ) \: factor

Similar questions