Math, asked by StrongGirl, 6 months ago

JEE Mains Maths question is in the image

Attachments:

Answers

Answered by shadowsabers03
10

Given,

\displaystyle\longrightarrow y=\sum_{k=1}^6k\cos^{-1}\left(\dfrac{3}{5}\cos(kx)-\dfrac{4}{5}\sin(kx)\right)

Take \theta=\cos^{-1}\left(\dfrac{3}{5}\right)=\sin^{-1}\left(\dfrac{4}{5}\right) which is constant.

Then,

\displaystyle\longrightarrow y=\sum_{k=1}^6k\cos^{-1}\left(\cos\theta\cos(kx)-\sin\theta\sin(kx)\right)

\displaystyle\longrightarrow y=\sum_{k=1}^6k\cos^{-1}\left(\cos(\theta+kx)\right)

\displaystyle\longrightarrow y=\sum_{k=1}^6k(\theta+kx)

\displaystyle\longrightarrow y=\sum_{k=1}^6\left(k\theta+k^2x\right)

\displaystyle\longrightarrow y=\sum_{k=1}^6k\theta+\sum_{k=1}^6k^2x

\displaystyle\longrightarrow y=\sum_{k=1}^6k\theta+x\sum_{k=1}^6k^2

Then its derivative wrt x will be,

\displaystyle\longrightarrow\dfrac{dy}{dx}=\dfrac{d}{dx}\left[\sum_{k=1}^6k\theta+x\sum_{k=1}^6k^2\right]

Since \displaystyle\sum_{k=1}^6k\theta and \displaystyle\sum_{k=1}^6k^2 are constants wrt x,

\displaystyle\longrightarrow\dfrac{dy}{dx}=\sum_{k=1}^6k^2

Since \displaystyle\sum_{k=1}^nk^2=\dfrac{n(n+1)(2n+1)}{6},

\displaystyle\longrightarrow\dfrac{dy}{dx}=\dfrac{6\times7\times13}{6}

\displaystyle\longrightarrow\underline{\underline{\dfrac{dy}{dx}=91}}

Hence (2) is the answer.

Similar questions